

Popoto is a brand of delResearch, LLC

Document Versioning Information

Version Purpose Author Date
1.01 Initial draft Jim DellaMorte 9/28/2018

1.02 Updated Document SSB John DellaMorte 2/2/2019

1.03 Added many new
commands

John DellaMorte 1/15/2020

1.04 Fixed page numbers John DellaMorte 2/26/2020

1.05 Add setIP command and
serial number query under
version

John DellaMorte 3/3/2020

POPOTO MINI
USER'S GUIDE

Table of Contents

1 Getting Started ... 6

1.1 In the box ..6

1.2 Required equipment ... 10

1.3 Hardware Configuration .. 10

1.4 Bench Test ... 11
1.4.1 Airtest with Transducers .. 11

1.5 Communicating with Popoto .. 12
1.5.1 RS-232 UART Connection .. 12
1.5.2 Ethernet Connection ... 12

1.6 Running the application ... 13
1.6.1 Checking the Version Number .. 13
1.6.2 Listing the help... 13
1.6.3 Running a ping ... 14
1.6.4 Ranging .. 14
1.6.5 Telnet operation .. 15
1.6.6 Chat Operation ... 15
1.6.7 Setting the data rate for Payload operation ... 17

1.7 Single Sideband Operation .. 19
1.7.1 SSB Transmitter... 19
1.7.2 SSB Receiver .. 21
1.7.3 Return to data mode .. 21
1.7.4 SSB Controllable parameter .. 21

2 System Overview ... 22

2.1 Introduction.. 22

2.2 Architecture .. 22

2.3 Directory Structure .. 24

2.4 System connections ... 24
2.4.1 RS-422 4 wire serial .. 25
2.4.2 RS-232 Uart ... 25
2.4.3 Network: 10/100BaseT ... 25

2.5 Modes of operations .. 26
2.5.1 Local pshell .. 26
2.5.2 Remote pshell ... 26
2.5.3 Matlab™ ... 27
2.5.4 Custom interfaces ... 27

3 Hardware components ... 27

3.1 A brief tour of the Digital Board .. 27

3.2 A brief tour of the Analog Board ... 30

 3

3.3 Mounting tray ... 31
3.3.1 Thermal putty ... 32

3.4 Transducer .. 32

4 The pshell .. 33

4.1 Modes of operation .. 33

4.2 Requirements for running .. 33

4.3 Invoking pshell .. 33

4.4 Invoking commands .. 34
4.4.1 Help.. 34
4.4.2 Tab Completion.. 34
4.4.3 Commands.. 34

4.5 Extending the pshell .. 52

4.6 Set-able and Get-able Parameters of Popoto Modem ... 52
4.6.1 System Level Variables .. 52
4.6.2 Receiver Oriented Variables .. 58
4.6.3 Transmitter Oriented Variables... 69

5 Diagnostics/Logs .. 81

5.1 Introduction.. 81

5.2 Popoto log .. 81
5.2.1 Introduction .. 81
5.2.2 Location ... 81
5.2.3 Logging Levels .. 82
5.2.4 MSM Logs .. 82

5.3 PCM Logging .. 83
5.3.1 Introduction .. 83
5.3.2 Socket based PCMLogs ... 84
5.3.3 Target File based PCM Logs ... 84
5.3.4 Notes: .. 85

5.4 pshell Logging .. 85

6 Appendix .. 86

6.1 The Acoustic Message Header.. 86

 4

List of Figures

Figure 1 25 Khz Popoto Transducer .. 6
Figure 2. Popoto Analog Board .. 7
Figure 3 Popoto digital board ... 8
Figure 4 Popoto Mounting Tray .. 9
Figure 5 High Level Popoto Block Diagram ... 11
Figure 6Popoto System ... 22
Figure 7 Overview of the Popoto Software architecture. Circles represent task-level
processing. Arrows represent data flow between these modules. 23
Figure 8: There are 3 main interfaces to the Popoto Modem application. 4 Wire RS422
UART, 3 Wire RS232 UART and 10/100 BaseT Ethernet. The location of each is
highlighted in this figure. .. 25
Figure 9: Local pshell processing. The pshell runs on the ARM processor, and connects
to the sockets via localhost. The only requirement for interface is a text-based
connection either via one of the serial ports or over the ethernet (ssh) 26
Figure 10: Operating in remote-pshell mode. In this use-case the remote processor
opens the sockets to the Popoto_app directly and communicates via the network. 27
Figure 11 Operating in Matlab™ mode. In this use-case the remote processor is a PC
running Matlab, using the Popoto.m class to interface to the Popoto_app. This use-case
allows for rapid access to the PCM stream of the Popoto system. 27
Figure 12Annotated Digital Board .. 28
Figure 13 Analog Top Side .. 31
Figure 14 Transducer impedance vs frequency air vs water .. 32
Figure 15: Format of a single PCM Log Packet. These packets are transmitted on the TCP
PCM Recording socket. ... 84
Figure 16: The PCM Packets are sent one after the other to the TCP Socket or to the
Target log file. ... 84

 5

 6

1 Getting Started

In this section we will explore how to configure, cable, and try the Popoto hardware and
software system.

1.1 In the box

A complete Popoto system consists of the following hardware components:

1. Transducer

2. Analog board

3. Digital board

4. SD card

5. Mounting tray

Transducer: The Popoto transducer consists of a potted ceramic piezo ring. It is designed to
efficiently convert mechanic signal energy to and from electrical analog signals in the 25 KHz
region. A picture of the transducer is shown below:

Figure 1 25 Khz Popoto Transducer

Analog Board: The Popoto analog board provides signal conditioning to and from the
transducer and provides conversion of the analog signals to the digital domain. The signal
conditioning of the receiver includes amplification, high pass filtering of the data, and analog to
digital conversion. The signal conditioning for transmitter includes digital to analog conversion,
and high power transmit amplification. The analog board also includes a line level analog path
to and from SMA connectors for debug purposes.

 7

The analog board directly connects to the digital board by way of a 30 position connector at the
bottom of the board.
A picture of the analog board is shown below:

Figure 2. Popoto Analog Board

Digital Board: The Popoto digital board provides for all signal processing, interface to analog
board, interface digital communication interfaces including:

• RS-232

• RS-422

• Ethernet

It also hosts all non-volatile and volatile memory, performs power conditioning, gpio interface,
and real-time clock functionality.

The heart of this board is and OMAP L138 device made by Texas Instruments. This device
includes an ARM 9 host processor which runs Arago Linux, and a TMS320C647x DSP floating
point DSP device which performs the computationally intensive signal processing tasks.

 8

A picture of the digital board is shown below:

Figure 3 Popoto digital board

micro SD Card: The enclosed Popoto micro SD card has been formatted Ext4 and includes
all of the operating system files, the Popoto application, the DSP application. It additionally
provides room for several GB of diagnostic storage if desired.

 9

Mounting Tray: The Popoto mounting tray is used to mechanically host both the analog
and digital boards. The two board connectors mate together through a slot in the mounting
tray. Another very important function of the mounting tray is to act as a heat sink for the
power amplifier on the underside of the analog board. This heat conductive interface is critical
to achieving the 100 Watt transmit capability of Popoto. The thermal junction between the
mounting tray and power amplifier on the analog board requires a special conductive thermal
putty made by FujiPoly at this interface.

A picture of the mounting tray is shown below:

Figure 4 Popoto Mounting Tray

 10

1.2 Required equipment

Along with the hardware and software that comprise Popoto, it is necessary have the
following equipment to facilitate the “Getting Started” procedure of this chapter.

• 12-18 Volt 5 Amp DC Power Source

• Ethernet cable

• PC running Ubuntu with ethernet capability

• RS-422 to USB connector

• SMA connectors

• Configuration Jumpers

Other helpful PC software to have at the ready includes

• MATLAB

• Audacity Audio Software

• Python 2.7

• Serial Port software for RS-232 or RS-422 connections

1.3 Hardware Configuration

There are three jumpers on the analog board that should be configured. These jumpers are:

Jumper Purpose Setting

J1 When inserted this jumper connects the SMA
amplifier to positive power. If the SMA is
intended for use, this jumper should be inserted

Jumper inserted for SMA

J2 This jumper selects the input to Popoto as either
from the Transducer or the SMA input

1-2 Trandsucer Input
2-3 SMA input

J5 When inserted this jumper connects the SMA

amplifier to negative power. If the SMA is
intended for use, this jumper should be inserted

Jumper inserted for SMA

J8 Connects the Analog high gain path to the
transducer. This should be inserted

Inserted

J10 Connects an external Transducer signal to the
low-gain path. Normally not inserted

Open

 11

1.4 Bench Test

Figure 5 High Level Popoto Block Diagram

1.4.1 Airtest with Transducers

Although the Popoto modem is designed to operate acoustically in an ocean environment, it
can communicate (although somewhat less reliably) in air. The acoustic energy transmitted
from Modem 1 can indeed be propagated through the air for short distances and received by
Modem 2. Assuming the multipath energy from sound reflection of the walls is not too
damaging, this signal can be detected and demodulated. If the multipath of the room prevents
detection, some careful placement of sound absorbing materials such as foam or cloth, and
repositioning either the transmitter or receiver transducer until reliable communication is
usually possible.

Running an air test is a good way to validate operation prior to water operation. Once reliable
communication is achieved, various commands such as ranging can be exercised effectively. It
should be noted that the range command will not yield accurate range estimates in air because
the speed of sound in air is more than 5 times slower than the speed of sound in water.
However, ranging in air is still useful for basic system checkout prior to fielding the modem in
the water.

 12

Configuration of the analog section for an air test is quite simple. First ensure that the Jumper
J2 is inserted between positions 1-2. This sets the analog input to driven by the acoustic signals
picked up by the transducer.

Once J2 is set, all that is necessary is plugging in the transducer into the J9 connector of the
analog board.

1.5 Communicating with Popoto

1.5.1 RS-232 UART Connection

For the purpose of “Getting Started”, it is recommended that a RS-232 Level UART to USB cable
be used. This is a standard off the shelf FTDI Cable with one end pinned to a 5 pin connector
that fits onto JP3 of the digital board, the other end of the cable is a standard USB connector
and will connect to a Windows or Linux PC.

When the UART USB cable is inserted the OS will discover the new communication device. At
that time open any standard serial terminal program configured for communication at 115200
bps, with no parity, 8 data bits, and 1 stop bit. When Popoto is powered up, the boot process
of the Popoto will be visible on this serial terminal. The boot up is finished when a login prompt
is available. Though login is not necessary for this “Getting Started” section, it is certainly
possible to login at this prompt. The user is root and there is no password.

1.5.2 Ethernet Connection

The ethernet connection is the most high-speed and versatile way to communicate to the
Popoto.

 13

1.5.2.1 Cabling

To connect to the Popoto using the ethernet simply attach an ethernet connector to the
CN4 of the digital board. The other end can either connect directly to the PC or through a
switch or router.

If a direct connect to the PC is utilized, it is required that the PC adapter is configured for
this case. To configure the ethernet network adapter the settings of TCP IPV4 must set to
be in the proper IP domain of Popotos static IP address, namely a 10.0.0.xx domain.
Usually it is helpful not to be connected to other network devices such as wifi when in this
mode.

If a connection through a router is desired, it is necessary for the router IP address
domain be in the same domain as Popoto, namely 10.0.0.xx,

1.5.2.1 Static IP

Note the Popoto modems are configured by way of setIP command in pshell. Initial IP
address is typically 10.0.0.232

1.6 Running the application

For this section it is assumed that we will be running air tests.

Once the modem has been completed the boot process it is possible to connect to the Popoto
by way of pshell. To invoke the pshell to connect to Popoto at address 10.0.0.222 simply open
a command shell in your operating system and type

python pshell

You should then see a popoto command prompt. Connect your pshell to your hardware using
the connect command as follows (assuming your hardware is at 10.0.0.222)

connect 10.0.0.222 17000

Once connected, it is possible to invoke a wide variety commands from the pshell.

1.6.1 Checking the Version Number

From the pshell type the version command. Popoto will respond with current software
version number and unit serial number.

1.6.2 Listing the help

 14

To list the commands supported by the pshell, simply type help. Popoto will respond with

a list of supported pshell commands. Note that tab completion for these commands is
supported.

1.6.3 Running a ping

When both modems are online and connected to their pshells, it is possible to send an acoustic
ping from one modem to be received by the other.

At the pshell type

ping .1

This command initiates the transmission of a test packet at about 4 watts of acoustic power.
This level of power is appropriate for an air test where the transducers of units are spaced 1-2
meters apart.

While the transmission is executing you will notice a red “transmitting” led illuminate on the
transmitters analog board. Once the transmission completes (3-4 seconds) the led will turn off.
On the receiver pshell, there should be indication of a packet received and the both the packet
and the header data should be displayed.

A message indicating ‘CRC error’ may occurs at the time of transmission on the receiving
Popoto instead of a ‘CRC check’ message. This occurs if the multipath of the room is adding so
much interference that the demodulator cannot successfully demodulate the test packet. In
such a case, reposition the transducers or pad any reflective surfaces to minimize acoustic
reflection.

1.6.4 Ranging

Once a successful ping has been achieved, it is instructive to try a range command. The syntax
of the range command is as follows:

range .1

This command instructs the initiating modem (Modem A) to send a range request at the power
associated with .1 (about 4 watts). You will immediately see the transmitter red LED of Modem
A illuminate for about a second. This request should be received by the receiving modem
Modem B. Upon successful demodulation of the range request by Modem B, it schedules a
transmission back to the receiver of Modem A. This new transmission will illuminate the red
LED of Modem B. When that transmission is complete, Modem A will measure the time
required to receive the response to its request, account for turnaround time, and calculate the
round trip time. This is mapped to a distance using the speed of sound in water and range is
calculated.

 15

Upon successful completion of the whole ranging cycle, a range report will be displayed on the
Modem A pshell.

1.6.5 Telnet operation

Lastly, it is possible to open up a chat window between both modems. From a linux prompt on
the terminal, type

telnet 10.0.0.222 17001

this will open a telnet window connected to Modem A (at the 10.0.0.222 address).

Next open another linux prompt on the terminal and type

telnet 10.0.0.223 17001

This will start another telnet session connected to Modem B (at the 10.0.0.223 address)

1.6.6 Chat Operation

Chat operation is a mode of the modem where two modems can communicate keyboard to
keyboard in a normal text configuration in a half duplex mode. To enter chat mode the

chat

command is entered at the pshell prompt. It is necessary to enter chat mode at both the
receiver and transmitter for chat mode to work.

While in chat mode characters that are entered in the keyboard are grouped into packets and
transmitted through the water, received by the receiver and presented to the user.

The start and stop of a packet is determined by 3 factors. The first method is to enter a carriage
return after a string of characters. This return signals the end of a string of characters to be
sent out of the modem. The second method to signal the end of a string is to timeout. After
period of no typing that exceeds the user configurable timeout parameter, the transmitter
console will take the user input gathered up until the timeout interval, group them into a
packet and send them. The last way to terminate a sequence of characters for transmission is
to exceed the user configured number of bytes per packet. For example if the parameter
ConsolePacketBytes is set to 32, then input characters are bundled into groups of 32 and sent
out automatically.

The user configurable parameters for console operation are shown below:

Parameter type Description

 16

ConsolePacketBytes int Sets the number of bytes in the data
console, after which they automatically are
sent to the transmitter

ConsoleTimeoutSec int Sets the timeout in seconds for the data
console, after which they automatically are
sent to the transmitter

To exit chat mode type ctrl-], followed by e for exit. Exit from both the transmitter and receiver
to resume normal operation.

 17

1.6.7 Setting the data rate for Payload operation

All packets comprised of three parts, the acquisition, the header, and an optional payload. The
acquisition sequence does not change for different data rates. The header is always sent at
80bps frequency hopping mode. The header contains information such as the transmit ID,
intended receiver ID (broadcast ID is 255), tx power, if there is a payload of information
following, what the payload length is, and what the modulation scheme for sending the payload
is.

An example of a PSK payload packet is shown below:

The modulation rate of the payload portion of the waveform is configured using the
PayloadMode variable. The various modulation schemes are:

0 80bps Frequency Hop mode

1 5120 bps PSK

2 2560 bps PSK

3 1280 bps PSK

4 640 bps PSK

5 10240 bps PSK

The PSK receiver includes user configurable parameters that can be adjusted for optimal
reception as a function of the channel. These include the number of taps for the equalizer and
the location of the first tap. Under normal operation these parameters are set for typical
operation with the number of forward taps (FIR) = 44, the number of backward (IIR) taps=6, and
the location of the first tap=16. Note the computational load of the receiver increases with the
square of the number of taps and the maximum number of taps (Forward + Backward) should

 18

not exceed 70. Also note that additional taps often increase noise and as such more taps does
not always mean better performance.

Parameter Type Description

PayloadMode int Sets the modulation of Transmitter
Payload
0- Frequency Hop
1- PSK 5.12 kbps
2- PSK 2.56 kbps
3- PSK 1.28 kbps
4- PSK 640 bps

PSK_FnTaps int Sets the number of taps for FIR
portion of filter (default 44)

PSK_BnTaps int Sets the number of taps for IIR
portion of filter (default 6)
Note: PSK_FnTaps+PSK_BnTaps must
be less than 70

PSK_StartOffset int Sets the location of first tap in FIR
delay line (default 16)

 19

1.7 Single Sideband Operation

Utilizing Popoto’s single sideband transmitter (SSB) and receiver allow for half duplex voice
communication through the water. The SSB signal is inherently and analog signal being through
the ocean at a carrier frequency. As an analog signal, this means that the reception of the
analog waveform includes the analog impairments of the channel. So if the channel is noisy,
the receiver will hear the noise. If the channel has echo, the resulting speech will include echo.
If there is no noise and no echo, and analog levels are set properly, there will be no distortion of
speech aside of the normal band limiting associated with telecom speech.

To utilize the SSB functionality of Popoto, it is necessary to ensure that the voice path
electronics are powered up. This is done by ensuring jumpers J1 and J5 are populated.

1.7.1 SSB Transmitter

The transmitter consists of a single sideband modulator which receives speech from the
microphone input J3 and modulates it up to carrier for transmission out of the tranducer and
through the water.

There are 3 ways to place the SSB transmitter in transmit mode.

1. A Popoto ssbtx command

2. A hardware PTT signal

3. Using the properly adjusted VOX

1.7.1.1 The ssbtx command

Issuing the ssbtx command places Popoto in transmit mode. This can be clearly seen by the
transmit LED glowing red on the analog board. Once in transmit mode, audio that is input on
SMA J3 will be modulated, shifted up to carrier,power amplified, and delivered to the
transducer.

1.7.1.2 Adjustment of transmit power

Proper adjustment of the transmit power is critical for good operation of the SSB transmitter.
Setting this power properly is a function of 2 variables

1. Microphone sensitivity

2. Desired transmit power

Both of these variables is are controlled by the SSB_Txpower variable. This variable should be
set such that the desired PEP power is achieved while speaking at a normal level in the
microphone.

 20

1.7.1.3 Peak Envelope Power

The proper adjustment of power for voice operation revolves around properly setting the Peak
Envelop Power. PEP is the value of power that is output by the transmitter when the speech is
at peaks in its overall envelop. Typically average power of speech is between 10%-20% of the
peak envelop power.

These adjustments should be made while the transducer is in water. Also these setting can be
approximated by careful monitoring of the input power in these peak regions and setting the
SSB_Txpower constant appropriately.

Choosing an appropriate PEP level is a function of the distance that one wishes to transmit, the
SNR of the channel, along with the reflectivity of the channel. These settings can be
experimentally derived in the water and presets can be made in the pshell for optimum speech
quality.

1.7.1.4 PTT keying of the transmitter

The Popoto hardware presently includes two GPIOs that are used for PTT and also headset
volume control. The truth table shown below illustrates the various modes associated with the
GPIOS. When the two GPIOs are zero, the transmitter is keyed, when they are 1,1 the receiver
operates, and the other two states will raise or lower the headset volume by 1 dB per click.

Gpio8[6] Gpio7[14] State

0 0 PTT depressed (Transmit Mode)

0 1 Headphone Volume UP

1 0 Headphone Volume DOWN

1 1 Receive Mode

1.7.1.5 Transmitter Vox

The SSB transmitter can be switched on using the speech signal itself. To utilize this feature,
the SSB_Vxmode should be set to 1. Next the SSB_Vxlevel should be increase from zero slowly
while speaking to arrive at the trigger point for the VOX. Proper setting of this level will ensure
that constant level audio background will not trigger the transmitter, but onsets of speech will
trigger the transmitter. Note that once the transmitter is keyed, the transmitter remains on for
a period of 2 seconds.

 21

1.7.2 SSB Receiver

Voice mode reception is enabled by issuing the ssb command from the pshell. At this command
the modem will transition from data modem mode to single side band receiver. Demodulated
audio will be present on the SMA connector J4. The audio level present on J4 is controllable by
setting the SSB_Volume parameter to the user desired level.

Additionally, the receiver incorporates a squelch for eliminating background noise between
segments of received speech. To utilize the squelch it is important to set the SSB_SqLevel
parameter in the pshell. An SSB_SqLevel of zero reflects no squelch and the receiver will be
continuously in the receive state with demodulated audio being presented to the headphones.
The user can gradually increase the squelch level until the interspeech segments are muted.

1.7.3 Return to data mode

To return to data mode simply enter datamode at the pshell prompt.

1.7.4 SSB Controllable parameter

The table below show all of the settable/gettable parameters available through the pshell for
the purpose of controlling SSB operation.

Parameter Type Description

SSB_Volume float Sets volume level of headset

SSB_Txpower float Sets microphone gain; for SSB, this controls the Tx power

SSB_VxMode int Normal PTT set to 0; VOX mode PTT set to 1

SSB_VxLevel float Sets the trigger level for PTT VOX

SSB_SqLevel float Sets the background noise level for squelch trigger (0.-always on)

 22

System Overview

1.8 Introduction

The Popoto system consists of several components working together to create an acoustic
digital communication system. At the lowest level, a Transducer provides the physical interface
between the Modem and the water. This transducer is connected to the Analog board which
can both drive the transducer as an output, and receive from the transducer as an input. The
analog board digitizes input and converts the analog signal in the water to digital data which is
sent to the Digital board. The digital board demodulates the data on the DSP, and sends the
bitstream to the ARM9 which determines what to do with the data based on the current
processing state.

1.9 Architecture

The Popoto modem system consists of a modem Algorithm operating within a framework. The
modem algorithm is responsible for modulating and demodulating PCM data to and from bits.
The Framework is responsible for bringing data to and from the algorithm, and controlling the
hardware and user interface to the modem system. In the Popoto system the modem used is a
Frequency Hopping modem, and the Framework is what we call FOAM.
 FOAM is an acronym for a Flexible Open Acoustic Modem Framework. This framework is
written in C++ and is engineered for the development and support of underwater acoustic
modems.
FOAM consists of 7 main features:

1. A processing statemachine (MSM) to control the interaction of the modem through

States such as Listening, Receiving, Transmitting and Ranging.

2. A base class (ModuleBase) which provides Message Queues and processing threads

which process text-based commands and requests from the Host or other threads

3. A Controller module which provides a single point of access to all settable and gettable

parameters in the system, each through a unique text string.

4. A socket-based interface to the Host. FOAM has 4 separate interfaces:

a. Command and Status (TCPCommand)

b. Modulated data (TCPData)

c. PCM Logging (TCPPcmRecorder)

Transducer

Application
(PC, Terminal,
remote client)

Analog
Board

Digital Board

DSP ARM9

Serial

TCPIP

PCM Anlg Sig.

Figure 6Popoto System

 23

d. Virtual A/D D/A Socket (TCPPcm)

5. A System Controller (SysCtl) Which provides functions to interact with Popoto

Hardware.

6. JSON Parseable status for ease of interface, and human-readability.

7. Complete interoperability with a PC based version of the code.

 The figure below shows a task-level view of the FOAM system. Commands are received on the
TCPCommand socket, and are sent to the Modem State Machine (MSM) where they are parsed,
and processed, or forwarded to the correct entity for processing.

Figure 7 Overview of the Popoto Software architecture. Circles represent task-level processing. Arrows
represent data flow between these modules.

 24

1.10 Directory Structure

The directory structure of the Popoto system is as follows:

Directory Subdirectory Purpose

board-support Operating system code from TI SDK

linux-

4.9.28+gitAUTOINC

+eed43d1050-

geed43d1050

Linux build for the OMAP

 u-boot-

2017.01+gitAUTOIN

C+9fd60700db-

g9fd60700db

Secondary boot loader. Loads the linux

kernel, and begins processing.

doc Documentation of the Popoto system

 Foam Reference Guide for the flexible open

acoustic modem framework

 ProjectNotes Tips and tricks collected informally

into a document

 Training Directory that contains the training

presentations and lab exercises

 User’s Guide This document.

 modem Software reference guide for the modem

software.

hardware Subdirectory for hardware interface

files

 board-

support/dtb-

rebuilder

Location of Popoto device tree and

utilities to rebuild it outside of

linux.

Software Subdirectory for all software that runs

on the Popoto OMAP system

 foam Code for the flexible open acoustic

modem architecture

 foam/shared Code that is common between ARM and DSP

for foam

modem Modulator and demodulator signal

processing code

 common Code that is used in the modulator and

demodulator and baseband/passbanding

software

 fh_modem The frequency hopping modem

 Multirate Code that mixes and downsamples or mixes

and upsamples. Conversion between

baseband and passband

Test Testing code

 MATLAB GUI Matlab interface with Popoto system

 Scripts Scripts used to interface to the Popoto

system using python, and scripts used to

launch tests on Popoto hardware

1.11 System connections

The Popoto modem has 3 primary interfaces for an external CPU or computer to connect to:
• RS422 4 Wire serial

• RS-232 Uart

• 10/100 BaseT networking

Each of these connections has properties that make it attractive in different situations.

 25

1.11.1 RS-422 4 wire serial

1.11.1.1 Reasons to use it

Good for long distance connections, up to 1200 meters. Simple serial interface. Robust to
noise and interference.

1.11.1.2 Reasons to avoid it

Remote unit needs drivers. Only good for up to 115200 bits per second which is not adequate
for PCM Streaming.

1.11.2 RS-232 Uart

1.11.2.1 Reasons to use it.

The RS-232 uart is a 3 wire serial interface. It consists of 3 signals, Transmit data, Receive
Data, and ground. The signal lines run at 3.3Volts This interface is particularly attractive if the
user is interfacing the modem to a local device, such as a micro controller on a UAV. All that is
required is a tx, rx and gnd signal.
For PC or laptop lab use, the pinout for this connector is a 5 pin 10mil header configured exactly
as the standard FTDI USB cables, which makes for a simple USB to serial interface available off
the shelf.

1.11.2.2 Reasons to avoid it

 This interface is only good for very short distances, such as within the same enclosure. The
bandwidth for this interface is limited to 115200 Bits per second which is not adequate for PCM
streaming.

1.11.3 Network: 10/100BaseT

1.11.3.1 Reasons to Use it

The 10-100BaseT Ethernet networking provides the highest speed and most flexible connection
to the Popoto system. Using TCP sockets over the ethernet provides upto 100MBits/S of full-
duplex throughput to the Popoto from a remote computer located up to 100 meters away.
This bandwidth can be used for real-time PCM capture, or rapidly updating software.
Additionally, the flexibility of the TCP sockets allows for 3

1.11.3.2 Reasons to avoid it

The additional speed and flexibility of the ethernet comes at a cost of ~250 milliwatts. In
addition, the range of the ethernet is limited to ~ 100 meters.

Figure 8: There are 3 main interfaces to the Popoto Modem application. 4 Wire RS422 UART, 3 Wire RS232
UART and 10/100 BaseT Ethernet. The location of each is highlighted in this figure.

 26

1.12 Modes of operations

The flexibility of the Popoto system provides for several use-cases. Each of these use-cases
applies to a different product scenario, so it is important when deciding which to employ, that
the requirements of the end product are carefully considered.

1.12.1 Local pshell

The pshell is a python program that connects with the Popoto application and provides a shell
interface to the modem and its command, status and data interfaces. This shell provides
simple commands such as send ranging, or setTxPower level so that either under human or
computer control the modem can be utilized. In this use-case, the interface to the modem can
be any one of:

• Serial RS-232

• Wire RS-422

• Or Ethernet over SSH

The pshell program runs co-resident with the Popoto_app on the OMAP’s ARM core processor.
Figure 8 shows local pshell processing.

1.12.2 Remote pshell

The remote pshell operates in the same way as local pshell, however the pshell python program
runs on a remote processor, and the connection to the Popoto_app is over TCP Sockets and
networks. Using a remote pshell is advantageous for streaming PCM directly to the PC’s
harddrive. Additionally the remote pshell is a good choice for running regression tests, as the
regression suites can live on the remote pc, which can also log results.

Figure 9: Local pshell processing. The pshell runs on the ARM processor, and connects to the sockets
via localhost. The only requirement for interface is a text-based connection either via one of the serial
ports or over the ethernet (ssh)

 27

Figure 10: Operating in remote-pshell mode. In this use-case the remote processor opens the sockets to the
Popoto_app directly and communicates via the network.

1.12.3 Matlab™

Matlab™ mode is very similar to remote-pshell mode, except that the connection to the
Popoto_app does not use a Python program, rather it connects using Matlab™ Matlab™ is an
excellent choice for running lab tests as it is a powerful language that is easy to use. Given
Matlab™’s expense, and need for a full PC to run, it is not likely to be deployed in a customer’s
end product.

Figure 11 Operating in Matlab™ mode. In this use-case the remote processor is a PC running Matlab, using the
Popoto.m class to interface to the Popoto_app. This use-case allows for rapid access to the PCM stream of the
Popoto system.

1.12.4 Custom interfaces

The Popoto system uses standard sockets for communications, so it is entirely possible for a
customer to generate a custom interface written in the language of his choice. Please see the
Popoto.py and Popoto.m files for ideas on how to implement such an interface.

2 Hardware components

2.1 A brief tour of the Digital Board

 28

The Popoto digital board contains many useful and flexible interfaces and connections.
Whether or not some of these interfaces are utilized is application specific and will likely vary
with customer needs. It is useful to take a macro view of the digital board and understand the
function of the major items.

Figure 12Annotated Digital Board

Key

1 Micro SD slot. All Popoto software resides on this device. Although the system
software will fit on a device as small as 1Gb, larger devices can be employed and are

 29

useful for storing logs and pcm recordings. Popoto can host microSD devices as large as
32 Gb.

2 This row of 5 pins is for a standard RS-232 level UART connection. This connection is
setup for 115200, n81
The pinout for the standard 5 pin UART connector is as follows:

Pin Number Name Type Cable Color Description
1 GND Ground Black Device Ground

Pin

2 NC

3 NC

4 RXD Signal IN Orange PC out Popoto
IN

5 TXD Signal OUT Yellow PC In Popoto
Out

3 JTAG emulator connection. This connector is useful for software debug on the Popoto.

4 This connector is an RS422 serial connector that is typically used for serial
communication with Popoto. These lines are wired and brought outside the bottle
through the water tight connectors.

The pinout of this connector is shown below:

5 This connector is an expansion board that includes a SPI interface and an I2Cinterface.

These interfaces are industry standard interfaces the details of which can be found on
the web. This connector is useful for interface with scientific equipment or peripherals
that could gather data and either store locally or transmit back using the modem.
The pinout for this connection is:

6 Remote power off. This two pin connector can be connected to a magnetic reed switch,

or simply brought out from the bottle on spare connector terminals When these two

 30

terminals are shorted, the board is powered down. In the powered down state all
processing and interfaces are stopped and the board is ‘off’ in very low current state
>1ma. . When these two terminals are ‘open’, the board is powered up and runs. It is
important to note that the transition from ‘off’ to ‘on’ begins the boot cycle for Popoto
and this takes about 45 seconds until Popoto is up and running.

7 DC System supply. This is the primary power source for Popoto and it can safely span
from 12-18 Volts. In fielded applications this power source is typically a battery pack,
however it can be safely powered with a quality DC power supply.
The current consumption of Popoto from the power supply varies substantially between
receive and transmit mode. While in transmit mode Popoto requires more current as a
function of the transmitted power requested.

Gross current requirements for an external power supply follows:

Receive only < 300 ma
Tx less than 1 watts <1 amp
Tx up to 100 watts 10 amps

8 Ethernet PHY connection 100 Mb/s

9 SATA connection. For possible connection of external SATA storage
10 Push button system reset. Forces a reboot.

11 DDR volatile memory
12 OMAP L138 processor composed of ARM & DSP

In addition to the items depicted in the table above, it is useful to know of 2 temperature
sensors that exist on the digital board. These two sensors are readable by the I2C interface
have been strategically located. The sensor at address 1001000x is located near the OMAP
processor and gives a quick information of the thermal status in the proximity of the processing
unit. The sensor at address 1001001x is located on the periphery of the board near the
heatsink away from heat producing components and gives status on the general ambient
temperature of the bottle.

2.2 A brief tour of the Analog Board

The analog board performs all the receive signal conditioning from the transducer along with all
of the high power transmit capability. It interfaces with the digital board by passing the
digitized analog signals over a high speed digital audio bus.

 31

The complete frequency response of the analog board largely driven by the transducer
response. The receiver was designed to cover a bandwidth from 20 KHz. through 48 KHz. when
paired with an appropriate transducer. The transmitter and its matching network is more
sensitive to frequency variations. A substantial move in center frequency will likely change
achievable power unless a carefully selected transducer is available and or the matching
network components are adjusted.

Figure 13 Analog Top Side

Key Feature
1 Plug for acoustic transducer

2 Jumper for input select {Transducer 1-2; SMA input 2-3}

3 Jumpers to enable SMA amplifier power
4 Transformer for transducer

5 SMA input line level analog

6 SMA output line level analog

7 Power amplifier inductors

8 Transmit LED, active when transmitter power amplifier is enabled

2.3 Mounting tray

 32

The mounting tray shown in Error! Reference source not found., has a three fold purpose:

1. Provide a secure physical mounting for the analog and digital boards that can also securely

mount to the bottle.

2. Provide EMI shielding between the active digital board and the sensitive analog board.

3. Provide thermal heat sink capability for the power amplifier during high power

transmissions.

2.3.1 Thermal putty

The thermal putty provides a strong thermal interface between the power amplifier and the
mounting tray. This interface is critical for high power operation and a high quality thermal
compound was selected. Use of Fujipoly XR-Um putty is recommended.

Anytime the analog board is unmounted and remounted it is recommended to change the
thermal putty at the Power Amplifier/Mounting tray junction.

2.4 Transducer

The Popoto transducer shown is a potted piezo ceramic ring. This transducer is capable of both
receive and transmit operation. The transmit operation is capable of operation in water at
powers of 100 Watts {lower powers are suggested for air testing}.

The frequency response of the transducer is depicted below:

Figure 14 Transducer impedance vs frequency air vs water

0

200

400

600

800

1000

1200

1400

1

10

100

1000

10000

10000 100000

M
ag

n
it

u
d

e
(o

h
m

s)

Frequency (Hz)

Magnitude in Tub (ohms) Magnitude Free Air (ohm)

 33

Here are some operating guidelines as they relate to transducer operation:

1. When transmitting, always have the tranducer plugged in

2. Keep careful control of the the ping and range amplitude when operating.

3. When transmitting in air keep powers below 10 watts.

4. Start at low powers (<10 watts) to verify proper operation before jumping to high

powers in water.

5. A good low power ping and range command is ping .1

6. Receiver performance in water greatly differs from receiver performance in air. Indoor

air reflections, multipath are very challenging and will require effort to minimize.

7. Indoor environments such as a laboratory typically have other sources of ultrasound

present that will tend to interfere with detections or cause false detections. These can

include monitors, LED lighting, proximity detectors used in alarm systems etc. To verify

if these are present in your lab environment it is recommended to do a 30 second PCM

recording without transmission and analyze the power spectrum of the recording in

MATLAB using the pwelch function.

8. When setting the transducer directly on a solid surface, i.e. lab bench, the bench can act

as a large mechanical pickup device and add to interference. As such it is a good idea to

set the transducers on a foam pad or equivalent.

3 The pshell

The pshell is a python command line shell utilizes commands defined in Popoto.py to provide a
python scriptable command shell containing all of the most useful commands from Popoto.py.
In addition the command shell provides for help and tab completion for ease of use. Responses
from commands are echoed to the command shell along with asynchronous alerts from
Popoto.

3.1 Modes of operation

There are two fundamental modes of operation of the pshell, it can be run on the user PC
under the PC’s local python or it can be run on the python that exists on Popoto OMAP
platform. Because communication from pshell to the Popoto is done through IP sockets, this
gives the flexibility of running pshell locally on the target or remotely on any PC on the network.

3.2 Requirements for running

python 2.7 (it is already installed on the Popoto hardware)
CMD command shell installed (it is already installed on the Popoto hardware)
CMD2 command shell installed (this gives some added features)

3.3 Invoking pshell

From the linux command prompt

 34

 python pshell

This will start the up the pshell and you are ready to being typing commands.

3.4 Invoking commands

3.4.1 Help

To gain a complete list of commands at any time simply

3.4.2 Tab Completion

The pshell supports tab completion. Tab completion will also show a list of various options for
a particular command.

3.4.3 Commands

This section presents a list of the currently implemented commands. A brief description is
presented along with typical invocations.

connect ___ 36
getvaluef __ 36
quit __ 36
setvaluei __ 37
disablemsmlog__ 37
getvaluei __ 37
ping __ 37
range ___ 38
setgainmode ___ 38
shell __ 38
edit ___ 39
help __ 39
py __ 39
recordstart ___ 39
shortcuts __ 40
enablemsmlog __ 40
history __ 40
pyscript ___ 40
recordstop ___ 40
setRate80__ 41
setRate640___ 41
setRate1280__ 41
setRate2560__ 41
setRate5120__ 42
setRate10240___ 42
setclock ___ 42
getclock ___ 42
setcarrier25 __ 43
setcarrier30 __ 43
setcarrier __ 43
disconnect ___ 43

 35

version __ 43
netplay __ 44
netrec __ 44
playstart ___ 44
playstop ___ 44
Rx __ 45
chat __ 45
mips __ 45
powerdown __ 45
deepsleep ___ 46
remote __ 46
upload __ 46
multiping __ 46
transmit ___ 47
transmitJSON ___ 47
transmitJSONFiles ___ 47
ssb ___ 47
ssbtx __ 48
datamode ___ 48
setIP __ 48
getPEP __ 48
startrx __ 48
getIP __ 49
load __ 50
q ___ 50
set ___ 50
setvaluef __ 51
unq ___ 51
sleep ___ 51

 36

connect
Description:
The connect command is used to connect the pshell with the command socket. This is typically
the first command executed in the session of a pshell. A successful connection responds with
the list of available parameters.

Invocation:

connect ipaddress port

Examples:
connect localhost 17000
connect 10.0.0.222 17000

getvaluef
Retrieve a floating point value from Popoto. A list of available parameters can be shown by
hitting a tab after the command.

Invocation:
 getvaluef parameter

 Examples:
 getvaluef batteryvoltage
 getvaluef detectthreshold

quit
Description:
Exit the pshell

Invocation:
 quit

 37

setvaluei
Description:
Set an integer parameter value in Popoto. . Tab completion after setvaluei will show the
settable parameters.

Invocation:
 setvaluei parameter value

 Examples:
 setvaluei MODEM_Enable 1
 setvaluei UPCONVERT_Carrier 30000

disablemsmlog
Description:
Disable the modem statemachine logging.

Invocation:
 disablemsmlog

getvaluei
Retrieve an integer value from Popoto. A list of available parameters can be shown by hitting a
tab after the command. Tab completion after getvaluei will show the settable parameters.

Invocation:
 getvaluei parameter

 Examples:
 getvaluei MODEM_Enable
 getvaluei DOWNCONVERT_Carrier

ping
Send a frequency hopped test message at a prescribed power level.

Invocation:
 ping txpowerlevel {txpower level typically between 0 and .6}

 Examples:
 ping .02
 ping .3

 38

range
Send a frequency hopped range request message at a prescribed power level. The receiving
modem will respond at the same level.

Invocation:
 range txpowerlevel {txpower level typically between 0 and .6}

 Examples:
 range .02
 range .3

setgainmode
Set the frontend gain control mode of the receiver.
Mode values are {0,1,2} where:

0- low gain channel mode

1- high gain channel mode

2- Autoselect the best channel (default)

Invocation:
 setgainmode mode

 Examples:
 setgainmode 1
 setgainmode 2

shell
Execute an OS command from the pshell.

Invocation:
 shell oscommand

 Examples:
 shell ls {spills a directory}
 shell pwd {shows the current working directory}

 39

edit
Bring up a VI editor from the pshell.

Invocation:
 edit <filename>

 Examples:
 edit
 edit myfile.txt

help
Show a list of available pshell commands

Invocation:
 help

py
Execute a python command.

Invocation:
 py pythoncommand

 Examples:
 py run(“myscript.py”)
 py print(“hello world”)

recordstart
Start a pcm recording to disk. Note that the recording destination has two options, the
recording can be stored on the Popoto local disk, or if a high bandwidth ethernet connection to
the Popoto socket exists, it is possible to record directly onto the local PC hardrive.

Invocation:
 recordstart filename [local]

 Examples:
 recordstart mypcmfile.pcm
 recordstart mypcmfile.pcm local

 40

shortcuts
Show a list of available pshell shortcut keys

Invocation:
 shortcuts

enablemsmlog
Description:
Enable the modem statemachine logging in the Popoto.log file on the target hardware.

Invocation:
 enablemsmlog

history
Description:
Display a history of all the pshell commands entered in a session.

Invocation:
 history

pyscript
Description:
Run a python script file.

Invocation:

pyscript <script_path> [script_arguments]

 Examples:
 pyscript myscript.py 12 8 7

recordstop
Stop a pcm currently recording to disk.

Invocation:
 recordstop

 41

setRate80
Description:
 Set the local modem to use the 80 bit per second modulation scheme

Invocation:
 setRate80

Examples:
 setRate80

setRate640
Description:
 Set the local modem to use the 640 bit per second PSK modulation scheme

Invocation:
 setRate640

Examples:
 setRate640

setRate1280
Description:
 Set the local modem to use the 1280 bit per second PSK modulation scheme

Invocation:
 setRate1280

Examples:
 setRate1280

setRate2560
Description:
 Set the local modem to use the 2560 bit per second PSK modulation scheme

Invocation:
 setRate2560

Examples:
 setRate2560

 42

setRate5120
Description:
 Set the local modem to use the 5120 bit per second PSK modulation scheme

Invocation:
 setRate5120

Examples:
 setRate5120

setRate10240
Description:
 Set the local modem to use the 10240 bit per second PSK modulation scheme. This has
no error correction so be advised.

Invocation:
 setRate10240

Examples:
 setRate10240

setclock
Description:
 set the Realtime clock in the format YYYY.MM.DD-HH:MM;SS
Invocation:
 setclock YYYY.MM.DD-HH:MM;SS

Examples:
 setclock 2020.01.12-12:00:00

getclock
Description:
 get the Realtime clock in the format YYYY.MM.DD-HH:MM;SS
Invocation:
 getclock

Examples:
 getclock

 43

setcarrier25
Description:
 set the modem carrier to 25 kHz
Invocation:
 setcarrier25

Examples:
 setcarrier25

setcarrier30
Description:
 set the modem carrier to 30 kHz
Invocation:
 setcarrier30

Examples:
 setcarrier30

setcarrier
Description:
 set the modem carrier to user specified frequence
Invocation:
 setcarrier <hertz>

Examples:
 setcarrier. 26000

disconnect
Description:
 Disconnect the Popoto modem from the IP socket
Invocation:
 disconnect

Examples:
 Disconnect

version
Description:
 Display the software version and hardware serial number of local modem
Invocation:
 version

Examples:
 version

 44

netplay
Description:
 Plays a baseband or passband file out the transducer using the network sockets
Invocation:
 netplay <delresearch file> <BB/PB>
 Where BB/PB 1= BaseBand Samples 0 = PassBand Samples

Examples:
 netplay mysound.rec 0

netrec
Description:
 Records file using the network sockets
 use:
Invocation:
 netrec <delresearch File> <time in seconds> <BB/PB>
 where file BB/PB=1 -> Baseband Recording 0->

Examples:
netrec mysound.rec 60 0

playstart
Description:

Starts a playback of audio from a file on the the local modem's filesystem out the
transducer.

Invocation:
 playstart <filename> <scale factor>

where filename is the name of the file to play
 where scale factor is a floating point gain to apply to the file
Examples:
playstart mysound.pcm 1

playstop
Description:

stop and close an in-process playback
Invocation:
 playstop

Examples:
playstop

 45

Rx
Description:

Receive packets and format the output for test purpose
Invocation:
 Rx [Verbose Flag]

 Verbose Flag = 1 Output SNR and Doppler info

 Press any Key to stop Rx mode

Examples:
Rx

chat
Description:

puts Popoto into a character chat mode
 ctrl-] to exit

Invocation:
 chat

Examples:
chat

mips
Description:

Query the popoto modem to determine internal cycle counts for algorithm .

This is an internal tool used by the developers

powerdown
Description:

puts the omap in low power mode
Invocation:
 powerdown

Examples:
powerdown

 46

deepsleep
Description:

Place Popoto into Deep Sleep mode to be awakened by a wake up tone on the acoustic
interface.

Invocation:
 deepsleep

Examples:
deepsleep

remote
Description:

Sets the pshell in remote mode.
In remote mode a command entered on shell prompt will be executed on the remote
modem

NOTE: You cannot issue a transmit command remotely

Invocation:
 remote <off>

NOTE: ‘remote off’ exits from remote mode
Examples:
remote
remote off

upload
Description:
 Uploads a file in streaming mode to remote modem.

Invocation:
 upload [filename] [power level]

Examples:
 upload myfile.zip 10

multiping
Description:
 Sends multiple test messages to a remote modem
Invocation:
 multiping <power Watts> <number of pings> <delay in seconds>

Examples:
 multiping 10 100 60

 47

transmit
Description:
 Transmit a string to the remote modem
Invocation:
 transmit <string>

Examples:
 transmit hello world

transmitJSON
Description:
 Transmit a JSON encoded message to the remote host.
 This is used for sending binary data to the remote.
 the structure of the message is
 {"Payload":{"Data":[<COMMA SEPARATED 8 BIT VALUES>]}}

 {"Payload":{"Data":[1,2,3,4,5]}}
 sends the binary sequence 0x01 0x02 0x03 0x04 0x05
Invocation:
 transmitJSON

Examples:
 transmitJSON {“Payload”:{“Data”:[1,2,3,4,5]}}

transmitJSONFiles
Description:
 transmit a series of JSON messages out of a file.

transmitJSONFiles <filename> <power> <delay between transmissions> <num
transmissions per packet>
transmitJSONFiles

Examples:
 transmitJSONFiles. Myfiles.txt 10 100 2

ssb
Description:
 Sets the modem in SSB voice receiver mode
Invocation:
 ssb

Examples:
 ssb

datamode returns user to data mode from ssb

 48

ssbtx
Description:
 Sets the modem in SSB voice transmit mode PTT depressd
Invocation:
 ssbtx

Examples:
 ssbtx

datamode returns user to data mode from ssb

datamode
Description:
Exit voice mode and return to data mode

Invocation:
 datamode

setIP
Description:
Set the default Ip address of the popoto modem

Invocation:
 setIP 10.0.0.2

getPEP
Description:
Get the peak envelop voice power since the last invocation of getPEP. Note that the first
getPEP returns zero always. Also note that for a meaningful measure the user should be
speaking at a normal volume for several seconds.

Invocation:
 getPEP

startrx
Description:
 Start up the receiver.
Invocation:
 startrx

 49

getIP
Description:

display the Ip address of the popoto modem.

Invocation:
 getIP

 50

load
Description:
Runs commands in script file that is encoded as either ASCII or UTF-8 text.

Invocation:

load <file_path>
 * file_path - a file path pointing to a script

Script should contain one command per line, just like command would be typed in console.

q
Halt characters being echoed onto the pshell window. This is useful if you need to type
something when being bombarded with alerts from Popoto. You can simply quiet the output
until you ‘unq’ which will unquiet it.

Invocation:
 q

set
Description:
Set a pshell command shell behavior parameter. These parameters can be listed by issuing a
set command with no parameters.

Invocation:

set param value

Examples:
set

 set editor vi
set timing true

 51

setvaluef
Description:
Set a floating point parameter value in Popoto. Tab completion after setvaluef will show the
settable parameters.

Invocation:
 setvaluef parameter value

 Examples:
 setvaluef FHMODEM_DetectThresh 18.5

unq
Resume normal pshell reporting

Invocation:
 unq

exit
exit the pshell

Invocation:
 exit

sleep
Description:
General purpose delay. Wait for a specified delay in seconds

Invocation:

sleep delayinseconds

Examples:
sleep 10
sleep 3

 52

3.5 Extending the pshell

One of the best parts of pshell is that it is easy to extend with simple python. For example if
you want to make a command that does five ranges spaced by 30 seconds, it is as simple as
adding these lines:

 def do_nranges(self,line):
 for x in range(1,5):
 self.dol.range(.1)
 time.sleep(30.)

Note the command name in the pshell would be nranges. With the pshell, you have the power
of the python language to create complex commands or specific syntaxes, mappings, command
checking etc very quickly and efficiently.

3.6 Set-able and Get-able Parameters of Popoto Modem

3.6.1 System Level Variables

Variable Name: APP_MODEMSMAOUT

Description:
This value sets whether to send signal data out the SMA port.
Genre:

System

Data Type:

int

Permissions:

Read/Write

Min : 0- Not out SMA
Max : 1- Sent out SMA
Syntax :
{ "Command": "GetValue", "Arguments": "APP_ModemSMAOut int 0"}
{ "Command": "SetValue", "Arguments": "APP_ModemSMAOut int 1 0"}
Return :
{“APP_ModemSMAOut”:value}

 53

Variable Name: APP_SOCKETBASEDPCM

Description:
This value sets whether to enable socket based PCM or default of A/D D/A PCM

Genre:

System

Data Type:

int

Permissions:

Read/Write

Min : 0- A/D D/A based PCM
Max : 1- Socket based PCM
Syntax :
{ "Command": "GetValue", "Arguments": "APP_ SocketBasedPCM int 0"}
{ "Command": "SetValue", "Arguments": "APP_ SocketBasedPCM int 1 0"}
Return :
{“APP_ SocketBasedPCM”:value}

Variable Name: APP_SYSTEMMODE

Description:
This value sets whether the modem is in 0-data mode, 1-SSB Tx, 2- SSB Rx

Genre:

System

Data Type:

int

Permissions:

Read/Write

Min : 0- data mode
Max : 1- SSB Tx mode

 2- SSB Rx mode
Syntax :
{ "Command": "GetValue", "Arguments": "APP_ SystemMode int 0"}
{ "Command": "SetValue", "Arguments": "APP_ SystemMode int 1 0"}
Return :
{“APP_ SystemMode”:value}

Variable Name: BATTERYVOLTAGE

 54

Description:
This command queries the system battery voltage.

Genre:

System

Data Type:

float

Permissions:

Read

Min : 0.0 Volts
Max : 40.0 Volts
Syntax :
{ "Command": "GetValue", "Arguments": "BatteryVoltage float 0"}
Return :
{“BatteryVoltage”:voltage}

 55

Variable Name: LEDENABLE

Description:
This value determines if onboard LEDS are 0-disabled, or 1-enabled. It can be useful for
power reduction to summarily disable board LEDS.

Genre:

System

Data Type:

int

Permissions:

Read/Write

Min : 0- LEDS disabled
Max : 1- LEDS enabled
Syntax :
{ "Command": "GetValue", "Arguments": "LedEnable int 0"}
{ "Command": "SetValue", "Arguments": "LedEnable int 1 0"}
Return :
{“LedEnable”:value}

Variable Name: LOGGINGLEVEL

Description:
This value sets the level of verbosity for the message logging
Genre: System

Data Type:

int

Permissions:

Read/Write

Min : 0- minimum logging
Max : 5- maximum logging
Syntax :
{ "Command": "GetValue", "Arguments": "LoggingLevel int 0"}
{ "Command": "SetValue", "Arguments": "LoggingLevel int 1 0"}
Return :
{“LoggingLevel”:value}

 56

Variable Name: RNG_SPEEDOFSOUND

Description:
This value sets the speed of sound in meters per second. An accurate measure of the speed
of sound is necessary for accurate ranging functionality. Please set this value as a function of
the local environment. The default is 1500 meters per second.

Genre:

System

Data Type:

float

Permissions:

Read/Write

Min : 1400 mps
Max : 1600 mps
Syntax :
{ "Command": "GetValue", "Arguments": " RNG_SpeedOfSound float 0"}
{ "Command": "SetValue", "Arguments": " RNG_SpeedOfSound float 1500 0"}
Return :
{“ RNG_SpeedOfSound”:value}

Variable Name: TCPECHO

Description:
This value determines if TCP characters are echoed on the telnet Tx stream

Genre:

System

Data Type:

int

Permissions:

Read/Write

Min : 0- no echo
Max : 1- telnet echo
Syntax :
{ "Command": "GetValue", "Arguments": "TCPecho int 0"}
{ "Command": "SetValue", "Arguments": "TCPecho int 1 0"}
Return :
{“TCPecho”:value}

 57

Variable Name: TEMP_AMBIENT

Description:
This command queries the system local ambient temperature in degrees Celsius.

Genre:

System

Data Type:

float

Permissions:

Read

Val : Degrees C

Syntax :
{ "Command": "GetValue", "Arguments": "Temp_Ambient float 0"}
Return :
{“Temp_Ambient”:voltage}

 58

3.6.2 Receiver Oriented Variables

Variable Name: DOWNCONVERT_CARRIER

Description:
This value sets the receiver downconverter carrier in Hz.

Genre:

Receiver

Data Type:

int

Permissions:

Read/Write

Min : 20000
Max : 59750
Syntax :
{ "Command": "GetValue", "Arguments": "DOWNCONVERT_Carrier int 0"}
{ "Command": "SetValue", "Arguments": "DOWNCONVERT_Carrier int 25000 0"}
Return :
{“DOWNCONVERT_Carrier”:value}

Variable Name: GAINADJUSTMODE

Description:
This value sets the mode of the input gain channels. 0-low gain, 1- high gain, 2- auto gain

Genre:

Receiver

Data Type:

int

Permissions:

Read/Write

Val : 0-low ; 1-high ;

 2-automatic mode
Syntax :
{ "Command": "GetValue", "Arguments": "GainAdjustMode int 0"}
{ "Command": "SetValue", "Arguments": " GainAdjustMode int 2 0"}
Return :
{“ GainAdjustMode”:value}

Variable Name: INBANDENERGY

 59

Description:
This parameter is the smoothed averaged sum of squares of the input passband energy.

Genre:

Receiver

Data Type:

float

Permissions:

Read

Min : 0.
Max : Max float
Syntax :
{ "Command": "GetValue", "Arguments": "InbandEnergy float 0"}

Return :
{“ InbandEnergy”:value}

Variable Name: INBANDNOISEENERGY

Description:
This parameter is the smoothed averaged sum of squares of the input baseband energy
sampled immediately prior to reception of a valid hopped acquisition signal.

Genre:

Receiver

Data Type:

float

Permissions:

Read

Min : 0.
Max : Max float
Syntax :
{ "Command": "GetValue", "Arguments": "InBandNoiseEnergy float 0"}

Return :
{“InBandNoiseEnergy”:value}

 60

Variable Name: LOCALID

Description:
This value contains the ID number of the modem. Valid numbers are 0-255
(note 255 is designated as a broadcast ID)

Genre:

Receiver

Data Type:

int

Permissions:

Read/Write

Val : 0 - 254

 255 -broadcast
Syntax :
{ "Command": "GetValue", "Arguments": "LocalID int 0"}
{ "Command": "SetValue", "Arguments": "LocalID int 127 0"}
Return :
{“GainAdjustMode”:value}

 61

Variable Name: MODEM_ENABLE

Description:
This value enables modem processing. When disabled, transmitter and receiver will not
process, but recording and playout still operate.
Genre:

Receiver/Transmit

Data Type:

int

Permissions:

Read/Write

Val : 0- modem disable
 1-modem enable
Syntax :
{ "Command": "GetValue", "Arguments": "MODEM_Enable int 0"}
{ "Command": "SetValue", "Arguments": "MODEM_Enable int 1 0"}
Return :
{“MODEM_Enable”:value}

Variable Name: PSK_BNTAPS

Description:
This value contains the number of backwards taps for the PSK equalizer. Note that the
number of backwards taps + forward_taps is constrained to be less than 70 taps. The default
value is 6
Genre:

Receiver/Transmit

Data Type:

int

Permissions:

Read/Write

Min : 0
Max : <70

NumFwd+NumBwd
Syntax :
{ "Command": "GetValue", "Arguments": "PSK_BnTaps int 0"}
{ "Command": "SetValue", "Arguments": "PSK_BnTaps int 8 0"}
Return :
{“ PSK_BnTaps”:value}

 62

Variable Name: PSK_CONSTELLATION

Description:
This value retrieves the 64 latest PSK constellation points
Genre:

Receiver

Data Type:

Float

Permissions:

Read

Min: Min float
Max : Max float
Syntax :
{ "Command": "GetValue", "Arguments": "PSK_Constellation float 0"}
Return :
{“ PSK_Constellation”:[v0,v1,v2,v3,…v63]}

Variable Name: PSK_FNTAPS

Description:
This value contains the number of forward taps for the PSK equalizer. Note that the number
of backwards taps + forward_taps is constrained to be less than 70 taps. The default value is
44
Genre:

Receiver/Transmit

Data Type:

int

Permissions:

Read/Write

Min : 0
Max :

NumFwd+NumBwd < 70
Syntax :
{ "Command": "GetValue", "Arguments": "PSK_FnTaps int 0"}
{ "Command": "SetValue", "Arguments": "PSK_FnTaps int 32 0"}
Return :
{“ PSK_FnTaps”:value}

 63

Variable Name: PSK_PDSNR

Description:
This parameter post detection SNR when in PSK modem

Genre:

Receiver

Data Type:

float

Permissions:

Read

Min : 0.
Max : Max float
Syntax :
{ "Command": "GetValue", "Arguments": "PSK_PDSNR float 0"}

Return :
{“PSK_PDSNR”:value}

Variable Name: PSK_PLL

Description:
This value contains error measured within the PLL when in PSK mode.

Genre:

Receiver

Data Type:

float

Permissions:

Read

Min: 0
Max : MAX float
Syntax :
{ "Command": "GetValue", "Arguments": "PSK_PLL float 0"}
Return :
{“PSK_PLL”:value}

 64

Variable Name: PSK_TAPS

Description:
This value retrieves the backward and forward equalizer taps. Note they are concatenated
backward + forward.
Genre:

Receiver

Data Type:

Float

Permissions:

Read

Min: Min float
Max : Max float
Syntax :
{ "Command": "GetValue", "Arguments": "PSK_Taps float 0"}
Return :
{“ PSK_Taps”:[b0, b1, b2, bn, f0, f1,…fm]}

n backward taps, m forward taps

Variable Name: RANGETIMEOUT_MS

Description:
This value contains the fixed turnaround delay from received range request to transmit range
response. This delay is measured in mS. The default value is 15000
Genre:

Receiver/Transmit

Data Type:

int

Permissions:

Read/Write

Min : 0
Max :

60000
Syntax :
{ "Command": "GetValue", "Arguments": "PSK_FnTaps int 0"}
{ "Command": "SetValue", "Arguments": "PSK_FnTaps int 32 0"}
Return :
{“RangeTimeout_mS”:value}

 65

Variable Name: RXENABLE

Description:
This value is used to enable/disable the receiver processing.
Genre:

Receiver

Data Type:

int

Permissions:

Read/Write

Min : 0- receiver disable
Max : 1- receiver enable
Syntax :
{ "Command": "GetValue", "Arguments": "RxEnable int 0"}
{ "Command": "SetValue", "Arguments": "RxEnable int 1 0"}
Return :
{“ RxEnable”:value}

Variable Name: RXSCRAMBLERMODE

Description:
This value enables or disables the data scrambler for PSK payloads
Genre:

Receiver/Transmit

Data Type:

int

Permissions:

Read/Write

Min : 0- disable PSK payload scrambler
Max :

1- enable PSK payload scrambler
Syntax :
{ "Command": "GetValue", "Arguments": "RxScramblerMode int 0"}
{ "Command": "SetValue", "Arguments": "RxScramblerMode int 1 0"}
Return :
{“ RxScramblerMode”:value}

 66

Variable Name: RXSTATE

Description:
This value is used to enable/disable the analog board receiver board hardware. It is not
recommended for users to modify.
Genre:

Receiver

Data Type:

int

Permissions:

Read/Write

Min : 0- receiver hardware
disable

Max : 1- receiver hardware
enable

Syntax :
{ "Command": "GetValue", "Arguments": "rxState int 0"}
{ "Command": "SetValue", "Arguments": "rxState int 1 0"}
Return :
{“rxState”:value}

Variable Name: SIGNALENERGY

Description:
This parameter is the smoothed averaged sum of squares of the input baseband energy
sampled during reception of a valid hopped acquisition signal.

Genre:

Receiver

Data Type:

float

Permissions:

Read

Min : 0.
Max : Max float
Syntax :
{ "Command": "GetValue", "Arguments": "SignalEnergy float 0"}

Return :
{“SignalEnergy”:value}

 67

Variable Name: SNR

Description:
This parameter is the ratio of signal to noise expressed in Db and captured during a valid
acquisition.

Genre:

Receiver

Data Type:

float

Permissions:

Read

Min : 0.
Max : Max float
Syntax :
{ "Command": "GetValue", "Arguments": "SNR float 0"}

Return :
{“SNR”:value}

Variable Name: SSB_SQLEVEL

Description:
This value sets the voice received squelch level. A level of zero corresponds to no squelch.
This value is set by a user to just above the background noise to mute the receiver until such
time as a signal arrives above the noise.

Genre:

Receiver

Data Type:

float

Permissions:

Read/Write

Min : 0.
Max : 1.
Syntax :
{ "Command": "GetValue", "Arguments": "SSB_SqLevel float 0"}
{ "Command": "SetValue", "Arguments": "SSB_SqLevel float .5 0"}
Return :
{“SSB_SqLevel”:value}

 68

Variable Name: SSB_VOLUME

Description:
This value sets the voice received volume level

Genre:

Receiver

Data Type:

float

Permissions:

Read/Write

Min : 0.
Max : 100.
Syntax :
{ "Command": "GetValue", "Arguments": "SSB_Volume float 0"}
{ "Command": "SetValue", "Arguments": "SSB_Volume float 10 0"}
Return :
{“SSB_Volume”:value}

69

3.6.3 Transmitter Oriented Variables

Variable Name: CARRIERTXMODE

Description:
This value enables or disables the carrier only transmit mode. In this mode, regardless of the
data sent to the modem, a single tone at the carrier frequency is transmitted. This mode is
useful for debug and experimentation.

Genre:

Transmitter

Data Type:

int

Permissions:

Read/Write

Min : 0- (default) modem mode

Max :
1- tone mode

Syntax :
{ "Command": "GetValue", "Arguments": "CarrierTxMode int 0"}
{ "Command": "SetValue", "Arguments": "CarrierTxMode int 1 0"}

Return :
{“CarrierTxMode”:value}

70

Variable Name: CONSOLEPACKETBYTES

Description:
This value corresponds to the number of bytes received on the telnet console to trigger an
autosend of the telenet data. This parameter is intended to make console to console
operation easier to use.

Genre:

Transmitter

Data Type:

int

Permissions:

Read/Write

Min : 1

Max : 8192

Syntax :
{ "Command": "GetValue", "Arguments": "ConsolePacketBytes int 0"}
{ "Command": "SetValue", "Arguments": "ConsolePacketBytes int 256 0"}

Return :
{“ConsolePacketBytes”:value}

71

Variable Name: CONSOLETIMEOUTMS

Description:
This value corresponds to time in milliseconds for the telnet console to trigger an
autosend of the telenet data when data is available. This parameter is intended to make
console to console operation easier to use.

Genre:

Transmitter

Data Type:

int

Permissions:

Read/Write

Min : 0

Max :
60000

Syntax :
{ "Command": "GetValue", "Arguments": "ConsoleTimeoutMS int 0"}
{ "Command": "SetValue", "Arguments": "ConsoleTimeoutMS int 10000 0"}

Return :
{“ConsoleTimeoutMS”:value}

72

Variable Name: PAYLOADMODE

Description:
This value corresponds modulation data rate of the Payload portion of the waveform.

Genre:

Transmitter

Data Type:

int

Permissions: Read/Write

Values : 0- 80bps Frequency Hop

 1- 5120 bps PSK

 2- 2560 bps PSK

 3- 1280 bps PSK

 4- 640 bps PSK

 5- 10240 bps (uncoded) PSK

Syntax :
{ "Command": "GetValue", "Arguments": "PayloadMode int 0"}
{ "Command": "SetValue", "Arguments": "PayloadMode int 1 0"}
Return :
{“ PayloadMode”:value}

73

Variable Name: PEAKENVELOPEPOWER

Description:
This value contains the peak envelope power of the previous SSB transmission. Reading
this variable clears the value.

Genre:

Transmitter

Data Type:

float

Permissions:

Read

Min : 0.
Max : MAX float
Syntax :
{ "Command": "GetValue", "Arguments": "PeakEnvelopePower float 0"}
Return :
{“PeakEnvelopePower”:value}

Variable Name: PLAYMODE

Description:
This value corresponds places the transmitter waveform player in either passband mode
or baseband mode.
Genre:

Transmitter

Data Type:

int

Permissions:

Read/Write

Min : 0- passband mode

Max : 1- baseband mode

74

Syntax :
{ "Command": "GetValue", "Arguments": "PlayMode int 0"}
{ "Command": "SetValue", "Arguments": "PlayMode int 1 0"}

Return :
{“PlayMode”:value}

75

Variable Name: REMOTEID

Description:
This value contains the intended receiver ID for the transmission.
Genre:

Transmitter

Data Type:

int

Permissions:

Read/Write

Min : 0
Max : 254

255 (broadcast)
Syntax :
{ "Command": "GetValue", "Arguments": "RemoteID int 0"}
{ "Command": "SetValue", "Arguments": "RemoteID int 12 0"}
Return :
{“RemoteID”:value}

Variable Name: SSB_TXPOWER

Description:
This value contains a scalar factor that scales the transmit output prior to
transmission.
Genre:

Transmitter

Data Type:

float

Permissions:

Read/Write

Min : 0.
Max : 10.
Syntax :
{ "Command": "GetValue", "Arguments": "SSB_Txpower float 0"}
{ "Command": "SetValue", "Arguments": "SSB_Txpower float 0.3 0"}
Return :
{“SSB_Txpower”:value}

76

Variable Name: SSB_VXLEVEL

Description:
This value contains a scalar that sets the level for a voice activated transmit switch
when in voice mode and SSB_VxMode is enabled. This input voice level must be
exceeded for the transmitter to self enable, once enabled the transmitter remains on
until a prescribed hangover period of silence expires. Note the default value is .005.
Genre:

Transmitter

Data Type:

float

Permissions:

Read/Write

Min : 0.
Max : 1.
Syntax :
{ "Command": "GetValue", "Arguments": "SSB_ VxLevel float 0"}
{ "Command": "SetValue", "Arguments": "SSB_ VxLevel float 0.003 0"}
Return :
{“SSB_ VxLevel”:value}

Variable Name: STREAMINGTXLEN

Description:
This value contains the number of bytes to be set when uploading a file.
Genre:

Transmitter

Data Type:

int

Permissions:

Read/Write

Min : 1
Max : 8192
Syntax :
{ "Command": "GetValue", "Arguments": "StreamingTxLen int 0"}
{ "Command": "SetValue", "Arguments": "StreamingTxLen int 1045 0"}
Return :
{“StreamingTxLen”:value}

77

Variable Name: TPASTATE

Description:
This value is an enable variable that is used to powerup or powerdown the transimit
final amplifier. It is not recommended for typical users to modify this variable.
Genre:

Transmitter

Data Type:

int

Permissions:

Read/Write

Min : 0
Max : 1
Syntax :
{ "Command": "GetValue", "Arguments": "tpaState int 0"}
{ "Command": "SetValue", "Arguments": "tpaState int 0 0"}
Return :
{“tpaState”:value}

Variable Name: TXCHIRPMODE

Description:
This value is an enable flag for setting the transmitter into ‘chirp mode.’ In this mode
the transmitter sends an lfm chirp followed by silence prior to sending the acquisition
sequence. This mode is used for characterizing channels by transmitting a known
signal and receiving the signal shaped by the channel.
Genre:

Transmitter

Data Type:

int

Permissions:

Read/Write

Min : 0- disabled (default)
Max : 1- enabled
Syntax :
{ "Command": "GetValue", "Arguments": "TxChirpMode int 0"}
{ "Command": "SetValue", "Arguments": "TxChirpMode int 1 0"}
Return :
{“TxChirpMode”:value}

78

Variable Name: TXPOWERWATTS

Description:
This value contains a parameter for the desired power in watts for the transmission.
It presumes the transducer has gone through a calibration phase for accurate
operation.
Genre:

Transmitter

Data Type:

float

Permissions:

Read/Write

Min : 0.
Max : 100.
Syntax :
{ "Command": "GetValue", "Arguments": "TxPowerWatts float 0"}
{ "Command": "SetValue", "Arguments": "TxPowerWatts float 30 0"}
Return :
{“ TxPowerWatts”:value}

Variable Name: TXTIMEOUT_MS

Description:
This value is the number of milliseconds that the transmitter can remain transmitting
a packet before a timeout will occur. The timeout terminates the transmission state.
Genre:

Transmitter

Data Type:

int

Permissions:

Read/Write

Min : 0
Max : 6000000 {default}
Syntax :
{ "Command": "GetValue", "Arguments": "TxTimeout_mS int 0"}
{ "Command": "SetValue", "Arguments": "TxTimeout_mS int 15000 0"}
Return :
{“TxTimeout_mS”:value}

79

Variable Name: UPCONVERT_CARRIER

Description:
This value sets the transmitter upconverter carrier in Hz.

Genre:

Transmitter

Data Type:

int

Permissions:

Read/Write

Min : 20000
Max : 59750
Syntax :
{ "Command": "GetValue", "Arguments": "UPCONVERT _Carrier int 0"}
{ "Command": "SetValue", "Arguments": "UPCONVERT _Carrier int 25000 0"}
Return :
{“UPCONVERT _Carrier”:value}

Variable Name: UPCONVERT_OUTPUTSCALE

Description:
This value sets the transmitter upconverter carrier in Hz.
Note setting the transmitter power via the API will be overwritten if this message is
sent.
Genre:

Transmitter

Data Type:

float

Permissions:

Read/Write

Min : 0.
Max : 10.
Syntax :
{ "Command": "GetValue", "Arguments": "UPCONVERT _ OutputScale float 0"}
{ "Command": "SetValue", "Arguments": "UPCONVERT _ OutputScale float 1. 0"}
Return :
{“UPCONVERT _ OutputScale”:value}

Variable Name: RNG_TA_DELAYMS

80

Description:
This value is the number of milliseconds that the transmitter waits from reception of a
range request. The default value is 5000
Genre:

Ranging

Data Type:

int

Permissions:

Read/Write

Min : 3000
Max : 8000
Syntax :
{ "Command": "GetValue", "Arguments": "RNG_TA_DelayMs int 0"}
{ "Command": "SetValue", "Arguments": "RNG_TA_DelayMs 7000 0"}
Return :
{“RNG_TA_DelayMs”:value}

81

4 Diagnostics/Logs

4.1 Introduction

The FOAM architecture has built in logging support to enable diagnostics and debug of
any in field problems. The logging consists of a rolling file based log file, along with
options for saving the passband PCM data. The log file is useful for determining
message flow and state transitions, and the PCM passband logging is useful for
diagnosing signal processing and signal quality issues.

4.2 Popoto log

4.2.1 Introduction

The Popoto.log is a diagnostic logfile which is is updated as the Popoto_app runs,

keeping track of message and logic flows within the system. This logfile has the
following properties.

• The Log file is Leveled: All logs are assigned a severity level in the code, and by

changing the output filter, only logs greater than a set severity level are displayed.

• The log file is Timestamped: Each log message is tagged with a millisecond

accurate realtime clock stamp, as well as a PCM Count timestamp. The Realtime

clock is useful for comparing transmit to receive times between units, and the PCM

clock gives an indication of when a message is displayed with respect to reception

or transmission of acoustic messages.

• The Logfile is Rolling: Each time the Popoto app is started, the previous log file is

added to a list of 10 preceeding log files. So that in the Popoto_app directory we

have Popoto.log, Popoto.log.1, Popoto.log.2…. Popoto.log.10 where Popoto.log is the

current logfile, and Popoto.log.1 is the most recent log file preceding this logfile.

4.2.2 Location

On the target hardware the Popoto.log file is found in the /home/root directory.
On the PC-Based Linux simulation, the Popoto.log is found in the /tmp directory. In
order to allow more than one Popoto image to run on .
a pc, the base-port number is appended to the Popoto.log filename. For example:

/tmp/Popoto.log.17000

Corresponds to a Popoto image run at a base port of 17000
Or
/tmp/Popoto.log.18000

Corresponds to a Popoto image run at a base port of 18000.

82

4.2.3 Logging Levels

Each log message is assigned a logging level from 0 to 7. Lower log levels are more
severe, and higher log levels are increasing details. The log levels are defined as
follows:

0. logERROR

1. logWARNING

2. logINFO

3. logDEBUG

4. logDEBUG1

5. logDEBUG2

6. logDEBUG3

7. logDEBUG4

By default all log messages with a logging level of logINFO or lower are written to the
log. To increase or decrease the log level issue the SetValue LoggingLevel int
<Level> 0 command

Or from the pshell:

setvaluei LoggingLevel <level>

To get the current logging level, issue the GetValue LoggingLevel int 0
command,

Or from the pshell:

getvaluei LoggingLevel

4.2.4 MSM Logs

The Modem State Machine has a built in logging mechanism that can be connected to
the Popoto.log file. This allows the user to see events, and state transitions as the
modem state machine operates. To enable the MSM logs, send the command
EnableMSMLogs.

Or, from the pshell:

enablemsmlogs

To disable logs, send the DisableMSMLogs command.

Or from the pshell:

disablemsmlogs

83

4.3 PCM Logging

4.3.1 Introduction

The Popoto system incorporates a means for logging the inbound PCM signals as seen
on the A/D. This logging mechanism is useful for diagnosing system problems. Since
the PCM signals that are logged are exactly what is presented to the Demodulator, it
possible to “re-run” a test condition, to determine the signal parameters or noise
environment. Two methods of logging are provided to the user:

1. TCP Socket Based Logging

2. Target File Logging

Each of these methods produces a data stream of packets that are formatted as
follows:

Count Data type Description

1 32 Bit unsigned int PCM Counter. Gives the
current PCM counter.
Should increase by 640
each frame. A skip in this
count indicates lost data

1 32 Bit unsigned int Status Word. Currently 0
indicates High Gain
Channel, and 1 indicates
low gain channel

640 32 Bit Floating point PCM Samples. All
normalized to High Gain
Receive Level.

84

Figure 15: Format of a single PCM Log Packet. These packets are transmitted on the TCP PCM Recording
socket.

4.3.2 Socket based PCMLogs

The Popoto system opens a TCP Server at baseport+2 (17002 default) which continually
streams PCM Packets as described above. Both the Popoto.py and Popoto.m interface
classes have functions to read that socket and log the data to the local pc.
From the pshell
recordstart <Filename> local

will start the recording in the current working directory.

To stop the recording:
From the pshell:
recordstop

4.3.3 Target File based PCM Logs

The Popoto system provides a command to store the received pcm locally. By sending
the RecordFileStart <FileName> command, the user can start logging data to the
local SD card.

If the filename is specified without a path, it will be recorded in /home/root. All other
paths should be complete paths. Wild cards are not parsed.

…

Figure 16: The PCM Packets are sent one after the other to the TCP Socket or to
the Target log file.

85

From the pshell:

recordstart WaterTestCapeCodCanal2_20.pcm

will begin a recording on the Popoto unit in the /home/root directory

To stop the recording, a RecordFileStop command can be sent on the command socket.

Or, from the pshell:

recordstop

A Matlab™ utility: rPCMData() is provided in the test/MATLAB GUI directory. This
utility can read a file logged by the pshell or by the Target recording, and returns 3
arrays, the PCM data, the PCM Counter(sequence number) and the status word.

4.3.4 Notes:

It is important to realize that PCM recording generates data very quickly. Each packet is
642 * 4 Bytes long, and 160 packets are generated per second. This results in a file that
grows at 410,810 bytes per second, or roughly 1.5 G Bytes per hour.

4.4 pshell Logging

The pshell provides a log of all commands and status responses for a pshell session.
This is useful for capturing the results of tests, or to evaluate the responses and
commands that were run. pshell logs are size-limited, and rotate. These logs can be
found in the directory that the pshell was run in.

86

5 Appendix

5.1 The Acoustic Message Header

Every acoustic packet contains a header packet. Some types of acoustic packets are
only a header, while others contain a subsequent payload packet.

bits Field Purpose Format

0-7 Message
Type

Identify between Packet, Packet with payload, ranging
etc.

MessageIDs
0 - Data
128 -Range Response
129 -Range Request
130 -Status

8 Bit MessageID

8-15 SenderID ID of the transmitting modem 0x0 – 0xfe - ID

16-
23

ReceiverID The intended ID of the destination receiver. 0x0 – 0xfe - ID
0xff = Broadcast
message

24-
31

TxPower The transmitted scale factor as entered by the
transmitting modem

Transmit power level as
a Q8 scale value

32-
47

PayloadLen If a payload follows this header the number of bytes
in this field specifies the number of bytes in the
payload

 Number of bytes

48-
55

CRC Parity check 8 bit CRC of the header

	1 Getting Started
	1.1 In the box
	1.2 Required equipment
	1.3 Hardware Configuration
	1.4 Bench Test
	1.4.1 Airtest with Transducers

	1.5 Communicating with Popoto
	1.5.1 RS-232 UART Connection
	1.5.2 Ethernet Connection
	1.5.2.1 Cabling
	1.5.2.1 Static IP

	1.6 Running the application
	1.6.1 Checking the Version Number
	1.6.2 Listing the help
	1.6.3 Running a ping
	1.6.4 Ranging
	1.6.5 Telnet operation
	1.6.6 Chat Operation
	1.6.7 Setting the data rate for Payload operation

	1.7 Single Sideband Operation
	1.7.1 SSB Transmitter
	1.7.1.1 The ssbtx command
	1.7.1.2 Adjustment of transmit power
	1.7.1.3 Peak Envelope Power
	1.7.1.4 PTT keying of the transmitter
	1.7.1.5 Transmitter Vox

	1.7.2 SSB Receiver
	1.7.3 Return to data mode
	1.7.4 SSB Controllable parameter

	System Overview
	1.8 Introduction
	1.9 Architecture
	1.10 Directory Structure
	1.11 System connections
	1.11.1 RS-422 4 wire serial
	1.11.1.1 Reasons to use it
	1.11.1.2 Reasons to avoid it

	1.11.2 RS-232 Uart
	1.11.2.1 Reasons to use it.
	1.11.2.2 Reasons to avoid it

	1.11.3 Network: 10/100BaseT
	1.11.3.1 Reasons to Use it
	1.11.3.2 Reasons to avoid it

	1.12 Modes of operations
	1.12.1 Local pshell
	1.12.2 Remote pshell
	1.12.3 Matlab™
	1.12.4 Custom interfaces

	2 Hardware components
	2.1 A brief tour of the Digital Board
	2.2 A brief tour of the Analog Board
	2.3 Mounting tray
	2.3.1 Thermal putty

	2.4 Transducer

	3 The pshell
	3.1 Modes of operation
	3.2 Requirements for running
	3.3 Invoking pshell
	3.4 Invoking commands
	3.4.1 Help
	3.4.2 Tab Completion
	3.4.3 Commands

	3.5 Extending the pshell
	3.6 Set-able and Get-able Parameters of Popoto Modem
	3.6.1 System Level Variables
	3.6.2 Receiver Oriented Variables
	3.6.3 Transmitter Oriented Variables

	4 Diagnostics/Logs
	4.1 Introduction
	4.2 Popoto log
	4.2.1 Introduction
	4.2.2 Location
	4.2.3 Logging Levels
	4.2.4 MSM Logs

	4.3 PCM Logging
	4.3.1 Introduction
	4.3.2 Socket based PCMLogs
	4.3.3 Target File based PCM Logs
	4.3.4 Notes:

	4.4 pshell Logging

	5 Appendix
	5.1 The Acoustic Message Header

