

Metrec∙X User Manual

Metrec•X P2S2 4 port

Metrec•X P1S8 9 port (shown with optional copper anti-fouling cage & remote dissolved oxygen sensor)

Version 2.03 19 April 2017

Revision History

Revision	Date	Description	Author
Version 1.0	08 May 2012	First Version of Manual	MT
Version 1.1	29 June 2012	Updates	EL
Version 1.2	05 July 2012	Updates	EL
Version 1.3	06 March 2013	Added Supported Sensor Configurations Table	DO
Version 1.4	12 June 2013	Format revision and updates	JZ
Version 1.5	26 August 2013	Minor Edits	JZ
Version 1.51	12 February 2014	Added UV•Xchange references	СВ
Version 1.52	16 July 2014	Added Ordering Codes	JZ
Version 1.53	1 August 2014	Edited voltage values	JZ
Version 1.54	06 October 2014	Updated Calculated SV	DO
Version 1.55	26 March 2015	Updated Power Consumption table and added Acetal version	QC
Version 1.56	30 March 2015	Added ordering code and reference	JZ
Version 1.57	12 May 2015	Added CSE-0026	JZ
Version 1.58	22 June 2015	Technical specification updates	JZ
Version 1.59	24 July 2015	Information for the UV option added	ABT
Version 1.60	24 August 2015	Independent UV option updates	JZ
Version 1.61	18 September 2015	Updated Independent UV option drawing	JZ
Version 1.70	12 November 2015	Added third-party	DO
Version 1.71	24 November 2015	Updated to include CT•Xchange ™	TN
Version 2.00	25 April 2016	Flared endcap options and auxiliary ports	ABT
Version 2.01	6 May 2016	Format revision	JZ
Version 2.02	26 October 2016	Updated technical specs	JZ
Version 2.03	19 April 2017	Added regulatory information	ABT

Table of Contents

General Description of the Instrument	. 2
Where Do I Start?	. 3
Shipping & Receiving	. 4
Receiving an Instrument	. 4
Returning an Instrument to the Factory	. 4
Instrument Configuration	. 5
Sensor Ports	. 5
Endcap Options	. 6
Using the Instrument	. 8
Pressure Ratings	. 8
Pre-Deployment Procedures	. 8
LED Indicator	. 9
Configuring Sampling Parameters Using SeaCast	. 9
Configuring Sampling Parameters through the Terminal	. 9
Accounting for Atmospheric Pressure Variations at the Surface	.10
Logging a Profile	.10
Monitoring Real Time Data	.11
Post-Deployment Procedures	.11
Viewing your Data	.11
Metrec•X with Independent UV	.12
Maintaining the Instrument	.13
Periodic Maintenance	.13
Communications	.14
PC Settings	.14
Output Formats	.14
Default Output Format	.14
Default Example Outputs	.15
Support	.18
Troubleshooting	.18
Contact AML Oceanographic	.20
Appendices	.21
Commands	.21
Communications Commands	.21
Sampling Rate Commands	.21
Output Format Commands	.22
Logging Commands	.22
General Commands	23
Technical Specifications	.24
Ordering Codes	28
Regulatory Information	29
Warranty	29
Technical Overview Drawings	30

General Description of the Instrument

AML Oceanographic X•Series instruments and Xchange[™] sensors are a major advancement in ocean instrumentation. Swappable and interchangeable sensors dramatically improve the capabilities of ocean instrumentation in the following ways:

- Change the instrument sensor types while at sea within seconds, and without tools. A CTD can be changed to a sound speed profiler by exchanging sensor heads.
- To optimize the resolution and accuracy of sensor data, sensors can be swapped to change the measurement range. For example, a 6000 dBar P•Xchange pressure sensor can be swapped with a 500 dBar P•Xchange sensor; the salt water C•Xchange conductivity sensor can be swapped for a fresh water C•Xchange conductivity sensor.
- Sensors from one instrument can be swapped to another instrument to maintain missioncritical capabilities.
- Calibrated sensors can be sent from the factory to the instrument. The instrument is not pulled from active duty for calibration.
- Spare sensors ensure that an instrument can be immediately returned to active duty after sustaining damage.
- All calibration and traceability data resides within each Xchange[™] sensor. Calibration data for all sensors is available from the instrument, and calibration certificates can be printed from AML Oceanographic SeaCast software when the instrument is connected.
- Logged data is stamped with sensor traceability and instrument configuration data.
- Only Xchange[™] sensors are sent for calibration, leaving the instrument working in the field.

Metrec•X is an externally-powered, multi-parameter instrument that allows you to change the instrument's sensor load, in the field and on-demand. The instrument can output data in real-time and log data to its internal memory simultaneously.

Metrec•X may be equipped with primary Xchange[™] sensor ports (C•Xchange, CT•Xchange, SV•Xchange), secondary Xchange[™] sensor ports (T•Xchange, P•Xchange, Tu•Xchange, UV•Xchange), and auxiliary sensor ports.

Sampling rates are set by time (2 Hz to every 24 hours), by pressure (0.1 dbar or greater increments), or by sound speed (0.1 m/s or greater increments).

Supported communication protocols for Metrec•X are RS-232 or RS-485. The instrument must be connected to a power supply capable of supplying +8 to 26 VDC with minimal line noise.

Any Metrec•X with a P1S4 or P1S8 endcap is compatible with UV•Xchange. Additionally, there is an "independent UV" option featuring a secondary port dedicated specifically to UV•Xchange. This separately powered port includes a Duty Cycle Controller to minimize power use while maximizing the effectiveness of the biofouling control system. It is wired internally into a Micro-6 connector and is powered through two dedicated lines on the communication cable.

Where Do I Start?

AML Oceanographic X•Series instruments ship with several manuals on the USB stick:

- An instrument manual (this Metrec•X manual) providing an overview on how to use and maintain the instrument;
- A SeaCast manual providing instructions on how to use the software to configure the instrument and review instrument data;
- Xchange[™] sensor manuals (C•Xchange, CT•Xchange, SV•Xchange, P•Xchange, T•Xchange, Tu•Xchange and UV•Xchange) providing overviews on how to install and maintain each of the Xchange[™] sensors;
- Auxiliary sensor manuals

If you are configuring an instrument for field use or lab testing, begin with the SeaCast manual.

If you are performing instrument maintenance, begin with the instrument manual.

If you are planning to swap an Xchange[™] sensor, read the Xchange[™] manual corresponding to your sensors.

If Metrec•X is equipped with UV•Xchange, refer to the UV•Xchange manual.

Shipping & Receiving

Receiving an Instrument

When receiving an instrument, perform the following steps to ensure the instrument will be ready for deployment when required:

- Inspect the shipping container, looking for signs of damage. Damage to the shipping container could indicate damage to the instrument inside.
- The shipping package should include all of the following items
 - Metrec•X instrument
 - Data/Power cable
 - o Black dummy plug
 - Two primary sensor blanking plug
 - Two secondary sensor blanking plugs
 - USB stick with manuals and documentation
- Check for damage
 - Check the cable for slices or gouges
 - Check the connector sockets for corrosion, dirt, and salt deposits
 - Check the pressure case for dents and scrapes
 - Check the sensors for cracks or bends
- Ensure all the Xchange[™] sensors are installed tightly onto their mounts. The blue locking sleeve should be tight, and sitting less than 1mm from the instrument end cap.
- Connect the instrument to a computer with the data cable and perform a scan or monitor if using SeaCast.

Returning an Instrument to the Factory

- If shipping for repair or recalibration, obtain an RMA number from the service centre.
- Pack the instrument in its original shipping box to prevent damage during shipping.

An RMA number can be requested using the contact options given in the Support section of this manual

Instrument Configuration

Sensor Ports

AML sensor ports come in two form factors and a number of functions. Most interface interchangeably.

Xchange[™] Ports

These ports accept swappable Xchange™ sensors that allow you to arrange your instrument in a variety of ways.

Primary ports accept water-detecting sensors SV, C, and CT•Xchange

Recessed secondary ports are used for P, T, and Tu•Xchange

Auxiliary Ports

AML Oceanographic offers analog integration for a number of third-party sensors. Some are available with conversion housings that allow direct installation into the sensor endcap. If that option is desired, a secondary port will be modified into an auxiliary port for that particular sensor. While the sensor can be removed, it will not function properly in other ports and is equipped with a black collar to show that it is not part of the Xchange[™] system.

Independent UV

Another variant of the secondary port is the UV port. It is an analog output for operating a UV•Xchange unit with a separate power source from the rest of the instrument. For more detail, see the Metrec•X with Independent UV section of this manual.

Endcap Options

AML instrument endcaps are described in terms of the number and type of sensor ports on them. For example, an instrument with one primary port and four secondary ports is a P1S4. The exception to this format is when specialty ports are involved; if what would otherwise be a P1S4 was equipped with one auxiliary and one UV port, it would become a P1S2-AUX1-UV.

P1S4

P1S4 Metrec•X endcap with blanking plugs installed.

Common Sensor Combinations on a P1S4 Endcap						
Port Type	Primary (P1)	Secondary (S4)				
Port Level	Elevated ↑↑	Upper ↑ Upper ↑ Upper ↑ Lower ↓				
1	С	Т	Р	UV	Tu	
2	С	Р	Т	UV	Tu	
3	SV	Т	Р	UV	Tu	
4	SV	Р	Т	UV	Tu	
5	СТ	Р	Т	UV	Tu	

Note that UV•Xchange is only compatible with P1SX style endcaps and may require configuration specific to the sensor payload installed. Refer to UV•Xchange manual for configuration details.

P2S2

P2S2 Metrec•X endcap with blanking plugs installed

In some cases, the primary mounts on a P2S2 can be converted into secondary ports with the use of an adaptor. This allows for additional sensor combinations that take advantage of the wider spacing on the endcap.

Common Sensor Combinations on a P2S2 Endcap						
Port Type	Primar	ry (P2)	Secondary (S2)			
Port Level	Elevated ↑↑ Upper ↑		Upper ↑	Lower ↓		
1	С	SV	Т	Р		
2	С	SV	Р	Т		
3	С	SV	Т	Tu		
4	С	SV	Р	Tu		
5	СТ	SV	Р	Tu		

P1S8

Flared P1S8 Metrec•X endcap

The P1S8 endcap is the most modular option. To fit more sensors, it flares out from the body. Designed to fit every type of Xchange[™] and auxiliary sensor, it can be configured many different ways without compromising UV antifouling coverage.

Using the Instrument

Pressure Ratings

Pressure ratings are given for Xchange[™] sensors, third-party sensors, and the entire instrument. **Deployments should never exceed the lowest of these pressure ratings.** For example, a 500 m instrument equipped with a 6000 dBar (0-6000 m) P•Xchange sensor is limited to deployments of 500 m depth or less. Similarly, a 6000 m instrument equipped with a 500 dBar (0-500 m) P•Xchange sensor is also limited to deployments of 500 m depth or less.

Caution: Do not exceed the specified pressure ratings of the P•Xchange sensor, Tu•Xchange sensor, any third-party sensors, or the instrument housing. Tu•Xchange sensors are limited to deployments of 200 m when equipped with wiper, or 300 m, regardless of the pressure rating of the instrument on which they are installed. Overpressure can result in damage to the sensors and the instrument.

Pre-Deployment Procedures

- Upon Receipt
 - o Use the Shipping and Receiving instructions to verify the condition of the instrument.
 - ∨ Verify that all sensor calibrations are valid for the duration of the deployment. If not, swap the Xchange[™] sensors for sensors with valid calibrations or send the Xchange[™] sensors to a service centre for recalibration.
 - Lightly lubricate the underwater connectors with 3M silicone spray or equivalent.
- Before leaving the jetty
 - If applicable, verify the P•Xchange pressure range is correct for the deployment.
 - \circ $\,$ Connect the instrument to a computer using the data cable.
 - Check the instrument memory
 - Save any unsaved memory files.
 - Initialize the memory (Note: This deletes ALL files stored in the instrument memory. Be sure to have a copy of all important logged data before performing this step.).
 - If using SeaCast, click the *Clear Memory* box.
 - If using a Terminal Emulator, send instrument an *INIT* command.

Caution: Install blanking plugs in all unused sensor ports prior to deployment. Failure to install blanking plugs will result in damage to the connectors.

CT•Xchange, C•Xchange & SV•Xchange blanking plug

T•Xchange, P•Xchange & Tu•Xchange blanking plug

LED Indicator

The LED indicator is located next to the data/power connector on the instrument's top end cap.

- The LED indicator will be on whenever the data/power cable is plugged into the instrument.
- The instrument will not start logging until it is immersed in water and it takes its first sample at the programmed sampling rate.

The LED indicator displays are as follows:

- **Solid green**: The instrument is on and the external power is greater than 9.9V
- **Flashing green**: The instrument is logging data and the external power is greater than 9.9V
- **Solid red**: The instrument is on and the external power is less than 9.9V. Supply power at higher voltage.

- Flashing red: The instrument is logging data and the external power is less than 9.9V
- **Off with data/power cable attached**: The instrument is not working properly. Consult the Troubleshooting section of this manual or call the service department.

Configuring Sampling Parameters Using SeaCast

SeaCast is free software provided for use with AML Oceanographic instruments. It can be used to set up an instrument for profiling or monitoring data, as well as downloading, graphing, and exporting the collected data.

Full details on the instrument configuration process and the software's capabilities can be found in the SeaCast manual. It is highly recommended that the SeaCast manual be reviewed prior to instrument usage.

Configuring Sampling Parameters through the Terminal

Instruments can also be configured for deployment using a terminal emulation program such as *HyperTerminal, RealTerm,* or *Tera Term.* As with SeaCast, communications with the instrument must be established using the correct communications port and settings. The communications settings are 8 data bits, 1 stop bit, no parity, no flow control, and the desired baud rate.

It is recommended that the instrument be configured with SeaCast. However, if connected via terminal emulation the following steps must be completed by issuing text commands:

Step	Possible Commands
Initialize Memory (erases instrument memory)	INIT
Set Log File Name	SET LOG filename.txt
Set Instrument Time & Date	SET TIME hh:mm:ss
	SET DATE mm/dd/yy
Set Sampling Parameters	SET SAMPLE RATE CONTINUOUS
	SET SAMPLE RATE 5/s
	SET P INC 1
	SET SOUND INC 2

The above table provides example commands only; many additional sampling regimes can be established using available commands. Please consult the Commands section of the Appendix for full syntax details on the commands you wish to use.

Accounting for Atmospheric Pressure Variations at the Surface

Climate and altitude changes can create fluctuations in atmospheric (barometric) pressure. AML's pressure sensors are sensitive enough to detect these variations. When this happens, the instrument's pressure channel may not read exactly zero when data is taken prior to submersion in the water. Nearly all absolute pressure sensors experience atmospheric pressure offsets if they are sufficiently sensitive.

To compensate for this atmospheric pressure offset, AML instruments have the ability to reset the pressure sensor's zero point. This can be initiated using AML Oceanographic SeaCast software or a Terminal emulator command. The compensation does not affect the calibration of the pressure sensor, and can be turned off or recalculated at any time. The compensation factor is applied through the entire calibrated pressure range. Note that this compensation cannot be applied to a built-in Paroscientific Digiquartz sensor, as found in bathyMetrec•X.

Once the atmospheric pressure compensation is applied, it will be applied to all pressure sensor data until it is turned off or recalculated. The setting is written to memory, so it remains set when the instrument is powered down.

Using SeaCast

Refer to the SeaCast User Manual for instructions on enabling "Zero Depth."

Using a Terminal Emulator

- Establish serial communications with the instrument on your computer. Refer to the Communications section of this manual for more information.
- Once connection is established, ensure the instrument is stationary, and is not submerged in water.
- To turn ON Atmospheric pressure compensation, issue the *ZERO ON* command. This will calculate and apply the offset required to compensate for current atmospheric pressure conditions.
- To turn OFF Atmospheric pressure compensation, issue the ZERO OFF command. This will disable the offset.
- Issuing the ZERO command again will calculate a new offset based on current conditions.

Logging a Profile

• Ensure the pre-deployment procedures have been completed (see page 5).

- Metrec•X is a real-time instrument with the ability to log data. To enable logging, send the command *SET SCAN LOGGING* to the instrument (see Commands section).
- Plug the data/power cable into the instrument.
- Ensure that the desired sampling settings have been selected and applied.
- With the instrument in air (NOT submerged), use the ZERO command to zero the barometric pressure offset (P•Xchange only).
- Enter the *M* or *MONITOR* command to begin monitoring data. All monitored data will be logged, provided the SET SCAN LOGGING command is enabled.
- The status LED should start to flash green to indicate data is being logged. Keep the instrument at this depth for 2 minutes prior to beginning the cast to allow the sensors to fully wet and the pressure case to shed heat.
- Send the instrument down to the desired depth and return it to the surface.

Monitoring Real Time Data

- Ensure the pre-deployment procedures have been completed (see page 5).
- Ensure that the desired sampling settings have been selected and applied.
- Plug the data/power cable into the instrument. If you power the instrument externally over a long cable, please note the following:
 - Voltage drop due to cable resistance increases with cable length. The voltage drop on a standard AML cable, with a standard Metrec•X, is about 2 volts per 100m of cable while sampling and 0 volts per 100m when in low power mode.
 - The instrument's low voltage warning triggers at 9.9 volts or less.
 - The instrument's auto shutdown triggers when supplied with 8.0 volts or less.
 - The instrument's maximum voltage is 36 volts.
 - The voltage at the instrument, while sampling, must be above the shutdown level for the instrument to operate.
- With the instrument in air, use the ZERO command to zero the barometric pressure offset (P•Xchange only).
- Lower the instrument until the sensors are fully submerged; the LED should start to flash green. Keep the instrument at this depth for 2 minutes prior to beginning the cast to allow the sensors to fully wet and the pressure case to shed heat.
- Begin monitoring data using SeaCast or a terminal emulation program.
- Send the instrument down to the desired depth and return it to the surface.

Post-Deployment Procedures

- When the instrument is pulled from the water it should be rinsed with fresh water.
- Dry the area around the connectors with a clean cloth or compressed air prior to disconnecting the plugs or cables. Do not blow compressed air into the P•Xchange sensor. Doing so may damage the sensitive pressure transducer diaphragm.
- Remove the cable. Place the dummy plug in the connector to protect it.
- Dry the instrument and stow it securely.

Viewing your Data

You may download and view data using SeaCast or a terminal emulation program. Please refer to the SeaCast manual to which outlines the steps to download and review your data.

Metrec•X with Independent UV

The independent UV option is offered for situations where economic power usage is critical but biofouling protection is still desired. By running the UV independently through a DCC, the instrument can take advantage of its power saving features, shutting down between measurements while UV•Xchange continues to prevent fouling uninterrupted on a different power source.

If the independent UV option is selected, one or more of the secondary ports will be configured exclusively for a UV•Xchange. For example, a P1S4 can be built as a P1S3+UV. Any such ports will be marked with "UV ONLY."

Configuration of the Duty Cycle Controller

The default setting for the DCC is a repeating pattern of 20 minutes on and 20 minutes off. The duty cycle can be set upon request for any combination of 2-minute increments in a repeating 120-minute period. The on-off timer begins immediately once the controller is supplied with power.

Note: If powered through the dedicated port, configuration options for UV•Xchange will not be accessible through SeaCast.

Power

Power to the UV port is independent from the rest of the instrument. If the independent UV option is selected, two pins on the connector that are normally unused are activated for this purpose.

Pin 5	UV VDC
Pin 6	UV GND

Power must be supplied continuously. When the DCC is in an "on" cycle, power is passed through to the device connected to the output. No power is passed to the output during an "off" cycle. The timing board itself consumes less than 0.1mA during both "on" and "off" cycles.

Maintaining the Instrument

Periodic Maintenance

Periodic preventative maintenance will prolong the life of the instrument. The following steps are recommended:

- If the instrument is very dirty or oily, allow it to soak in warm, soapy water before cleaning with a rag or soft brush. When finished, rinse with fresh water to remove any residual soap or dirt.
- Before each use:
 - Check for proper installation of all Xchange[™] sensors.
 - Check for nicks and cuts on the cable.
- After each use:
 - o Clean and rinse the instrument using fresh water.
 - Dry the instrument completely, and store it in a cool, dry place.
- Monthly:
 - Apply a layer of Molykote 44 medium silicone grease to the female half of the connection as shown and fully insert the plug. Wipe away any excess that squeezes out. This will lubricate both male and female connectors.

- Yearly:
 - Send the instrument or Xchange[™] sensors to a service centre for diagnostics and re-calibration.

Communications

PC Settings

Metrec•X will communicate with both RS-232 and RS-485 serial connections. The computer to which the instrument is connected must be set up as follows:

- 8 bits
- 1 stop bit
- No parity
- No hardware flow control
- Baud rate of 600, 1200, 2400, 4800, 9600, 19200, or 38400 baud

After power up, the Metrec•X will wait for an ASCII carriage return. The instrument will automatically detect whether communications are RS-232 or RS-485 and also the baud rate.

Output Formats

Output formats can be modified. If the required modifications are not supported by the commonly used command list in the next section, please contact the factory for support on custom output formats.

Formatting can be changed in the following ways:

- The number of decimal places for each channel
- Turn on or off
 - o date and time
 - o calculated parameters (salinity, density, and calculated SV)
 - o power up information (header)
 - o automatic monitoring on power up

Default Output Format

The output from Metrec•X is space delimited values. The following table shows the output units for each Xchange[™] sensor:

Sensor	Units	Default Format
SV•Xchange™	m/s	1234.567
Conductivity•Xchange™	mS/cm	12.346
CT•Xchange™ Conductivity	mS/cm	12.345
CT•Xchange™ Temperature	С	12.345
Pressure•Xchange™	dBar	1234.56
Temperature∙Xchange™	С	12.345
Turbidity•Xchange™	NTU	1234.56
UV•Xchange™	-	1
		(1 indicates UV on, 0 indicates UV off)

The default data channel outputs with all calculated parameters turned on are the following:

P1S4 Configuration (with SV, P, T, and Turbidity sensors)

Date	Time	Sound Velocity	Pressure	Temperature	Dissolved Oxygen	Turbidity	Battery	Density	Salinity
mm/dd/yy	hh:mm:ss.ss	m/s	dBar	С	mg/L	NTU	volts	kg/m ³	ppt

P2S2 Configuration (with SV, C, P, T sensors)

Date	Time	Sound Velocity	Conductivity	Pressure	Temperature	Battery	Density	Salinity	Calc. SV
mm/dd/yy	hh:mm:ss.ss	m/s	mS/cm	dbar	С	volts	kg/m ³	ppt	m/s

Note: These are examples of the default configurations. Your data channel outputs will be entirely dependent on which Xchange[™] sensors are installed.

Default Example Outputs

Keyboard inputs in the output capture shown below are in bold type.

METREC.X Version 4.13.10 SN:50002 AML Oceanographic Ltd. 969.0 MBytes installed

>scan

05/08/12 12:56:06.54 1486.164 00.076 -0000.13 21.244 009.85

>monitor

05/08/1212:56:08.261486.16400.0760000.0221.244009.8305/08/1212:56:08.321486.16500.077-0000.0621.244009.8505/08/1212:56:08.371486.16900.077-0000.0621.244009.8505/08/1212:56:08.441486.16300.0760000.0921.244009.8505/08/1212:56:08.511486.16300.0750000.1721.244009.8505/08/1212:56:08.581486.16500.0760000.1721.244009.8505/08/1212:56:08.651486.16600.0770000.2521.244009.8505/08/1212:56:08.721486.16700.0780000.0921.244009.85

>dis options

[Instrument] Type=METREC.X EmulationMode=disabled UseCustomHeader=yes SN=50002 Firmware=V4.13.10 SampleUnits=continuous SampleInterval=0 PressureInc=0.00 SoundInc=0.00 LogFile=data.txt Date=05/08/12 Time=12:56:28 MemorySize=969.0 MB MemoryUsed=7.6 MB DisplayTime=yes DisplavDate=ves DisplaySalinity=no DisplayDensity=no

DisplaySoundVelocity=no DisplayBattery=yes RelayMode=RS232 mode RealtimeLogging=no LoggingTimeout=0 StartupDelay=10 DisplayHeader=yes StartupMode=prompt CharacterReception=yes LoggingBreakMode=no DetectionMode=A3 BatteryACoefficient=+3.500000E-01 BatteryBCoefficient=+2.500000E-02 ShutDownVoltage=8.0 WarningVoltage=9.9 PressureOffset=0.00 UsePressureOffset=no SoundVelocityThreshold=1375.00 DelimterMode=Space SensorDetectionMode=Once Traceability=yes SkipPowerOff=no AnalogChannels=2 [Slot 1]

SensorName=SV-C.Xchange SV.X SN 201579 04/26/12 BoardSN=04258

[Slot 3] SensorName=SV-C.Xchange C.X SN 500237 05/04/12 BoardSN=04248

[Slot 5] SensorName=P-T.Xchange P.X SN 300312 05/04/12 T.X SN 400458 05/04/12 BoardSN=03905

>dir

test .raw 1750 05/08/12 12:52:16.00 data .txt 1750 05/08/12 12:54:18.00

961 MBytes free 7 MBytes Used 2 File(s) listed

>**dump data.txt** [cast header]

[cast header] InstrumentSN=50002 Date=05/08/12 Time=12:54:18.87 PressureOffset=0.00 UsePressureOffset=no Slot1Sensor1=SV-C.Xchange SV.X SN 201579 04/26/12 Slot3Sensor1=SV-C.Xchange C.X SN 500237 05/04/12 Slot5Sensor1=P-T.Xchange P.X SN 300312 05/04/12 T.X SN 400458 05/04/12 [Data] 05/08/12 12:54:19.03 1486.107 00.076 0000.09 21.236 009.85 05/08/12 12:54:19.10 1486.105 00.076 0000.17 21.236 009.85

05/08/12 12:54:19.	10 1486.105	00.076	0000.17	21.236	009.85	
05/08/12 12:54:19.	16 1486.108	00.077	0000.17	21.236	009.85	
05/08/12 12:54:19.	23 1486.105	00.076	0000.17	21.236	009.85	
05/08/12 12:54:19.	29 1486.102	00.077	0000.17	21.236	009.85	
05/08/12 12:54:19.	36 1486.108	00.076	0000.17	21.236	009.85	
05/08/12 12:54:19.4	43 1486.102	00.077	0000.17	21.236	009.85	
05/08/12 12:54:19.	50 1486.105	00.075	0000.09	21.236	009.85	
05/08/12 12:54:19.	57 1486.107	00.076	0000.25	21.236	009.85	
05/08/12 12:54:19.	64 1486.104	00.076	0000.25	21.236	009.85	
05/08/12 12:54:19.	71 1486.105	00.076	0000.17	21.236	009.85	
05/08/12 12:54:19.	78 1486.111	00.077	-0000.13	21.236	009.85	
05/08/12 12:54:19.	84 1486.101	00.076	-0000.21	21.236	009.85	
05/08/12 12:54:19.	91 1486.107	00.076	0000.02	21.236	009.85	

Support

Troubleshooting

Instrument fails to communicate:

- Is the connector damaged?
- Check the cables
 - Is the data/power cable connected to the instrument and computer?
 - Are there any cuts in the cable?
 - If using a cable other than an AML cable, it should be configured as a null modem cable.
 - If using multiple cable lengths, the extensions should **not** be configured as null modem cables.
- If using external power over a long cable, check the voltage drop over the cable. Measure the voltage across a 10 watt, 27Ω resistor across pins 1 and 4 of the cable. The voltage should be between 9.9 and 26 volts.
- Are the communication settings in the program used on the computer correct?
 - Comm port selection
 - o 8 bits
 - 1 stop bit
 - No parity
 - No hardware flow control
 - Baud rate between 600 and 38,400 baud
- Are the communication settings in the instrument correct?
 - Was the instrument specifically set to one baud rate last time? If so, use that baud rate to resume communications.
 - Was the instrument set to only RS-232 or only RS-485 last time? If so, resume communications in the required protocol.
 - Was the instrument set to *RX OFF* last time? If so, a carriage return must be sent to the instrument immediately after power is applied to interrupt this mode.
- Was the instrument set to monitor on power up mode? If so, a carriage return must be sent to the instrument immediately after power is applied to interrupt this mode. To interrupt monitor on power up, hold down the ENTER key while applying power to the instrument.

Instrument fails to log:

- Verify the LED indicator status:
 - With the instrument in air (NOT submerged), insert the communication cable. The LED indicator should show solid green indicating the instrument is powered and ready

Note: If no SV•Xchange, CT•Xchange, or C•Xchange sensors are installed, the instrument will begin logging in air.

- Place the instrument's sensors in water. The LED indicator should remain green and begin flashing, indicating the instrument is powered and logging.
- If the LED indicator shows red, increase the supply voltage to between 10 and 36 volts.

- If the indicator does not light up, the instrument is not operating correctly. Continue with the remaining troubleshooting items.
- Allow at least two sample periods for the instrument to detect that it is immersed.
- Were the sound velocity increment, pressure increment and/or sample rate settings set to values that could prevent logging?
- Was the log file name set correctly?
- Is the connector damaged, dirty, or corroded?
- If all previous steps fail, reset the instrument. Send an *INIT* command to the instrument to re-initialize the memory. Note: The *INIT* command will completely erase all settings stored on the instrument.

Instrument generates noisy data:

- Is the connector damaged, dirty, or corroded?
- If connected to external power, is there noise on the power supply? Switch-mode power supplies are common sources of noise.
- Nearby EMI sources such as electric motors, generators, and transformers can create noise. If possible, move the instrument and its cables away from the noise source.
- Are the sensor/s clean?
- Are there bubbles on or in the sensor/s?
- Are the sensor/s damaged?
- Is there something nearby affecting the water temperature?

SeaCast fails to recognize a sensor:

- Be sure to download the latest version of SeaCast
 - Tu•Xchange requires SeaCast version 3.0 or greater for full functionality.

SV•Xchange data does not match CTD-calculated SV:

Owing to the error associated with each individual sensor and Chen and Millero's equation¹, sound velocity calculated from CTD values will fall within approximately ±0.4 m/s of the actual value 95% of the time. It is not uncommon to see differences of this size between directly measured sound velocity and CTD-calculated sound velocity.

¹ Chen-Tung Chen and Frank J. Millero, "Speed of sound in seawater at high pressures," *The Journal of the Acoustical Society of America* 62, no. 5 (1977): 1129-1135.

Contact AML Oceanographic

Service

To request an RMA or technical support

Email: service@AMLoceanographic.com Phone: 1-250-656-0771 Phone: 1-800-663-8721 (NA) Fax: 1-250-655-3655

Sales

For all general sales inquiries

Email: sales@AMLoceanographic.com Phone: 1-250-656-0771 Phone: 1-800-663-8721 (NA) Fax: 1-250-655-3655

Website

http://www.AMLoceanographic.com

Customer Portal

My AML Oceanographic is AML's online data centre. This secure area within our website is designed to offer one easy location for interested individuals and organizations - distributors, customers, prospects, and other members of our community - to manage their interactions with AML. *My AML Oceanographic* will allow you to:

- View and manage your assets (instruments and sensors)
- Consult instrument diagnostic summaries
- View and download calibration and conformity certificates
- View and manage your technical support cases
- Consult and download sales estimates, sales orders, and invoice copies
- View account balances and generate account statements
- Assess inventory availability at AML

To access the Customer Portal, please navigate to the *Support* button - located on the top right of the AML Oceanographic home page - select *Customer Centre* from the options on the drop down menu and follow the instructions provided.

Mailing and Shipping Address

AML Oceanographic 2071 Malaview Ave. Sidney, BC, Canada V8L 5X6

Appendices

Commands

When using SeaCast, the full command set is not usually necessary. However, text commands are available. Below is a listing of commonly used commands. Note that some commands are only available on instruments equipped with the appropriate Xchange[™] sensors.

Command	Description	Requires
SET FORCE 232	Sets com mode to RS-232. Power must be cycled for	
	changes to take effect.	
SET FORCE 485	Sets com mode to RS-485. Power must be cycled for	
	changes to take effect.	
SET FORCE AUTO	Sets for auto-detection of RS-232 or RS-485 comms. Note	
	that if instrument is not connected to a com port on power	
	up, it assumes RS-485 operation and will remain in that	
	mode until powered down.	
DISPLAY FORCE	Displays current com mode (ie RS232, RS485, AUTO)	
DISPLAY DETECT	Displays the baud rate detection settings.	
SET DETECT a b	Sets the baud rate detection. "a" sets the number of	
	autobaud detection attempts before the instrument reverts to	
	the default baud rate set by "b." Setting 'a'=0 forces the	
	instrument to a fixed baud rate determined by "b."	
	""b"=	
	1 = 600 baud 4 = 4800 baud 7 = 38400 baud	
	2 = 1200 baud 5 = 9600 baud 8 = 57600 baud	
	3 = 2400 baud 6 = 19200 baud 9 = 115200 baud	

Communications Commands

Sampling Rate Commands

Command	Description	Requires
DISPLAY SAMPLE RATE	Displays the time-based sampling rate.	
SET SAMPLE n t	Sets the desired sampling rate. "n" is a number and "t" is thetime units. Using the slash (/) character should be read as"per". For instance, 5 s means sampling happens every 5seconds. 5/s means 5 samples per second. Examples are:SET S CSET S 5 /sSET S 1 sSET S 2 /mSET S 5 mSample 1 time every 5 minutesSET S 2 /hSET S 2 /hSemples per hourSET S 2 /hSample 1 time every 24 hours	
DISPLAY INCREMENT	Displays logging increment for pressure in dBars.	P•X
SET PRESSURE INCREMENT n	Sets logging by increment of pressure specified by n = increment value in dBar (resolution of 2 decimal places).	P•X
SET SOUND INCREMENT n	Sets logging by increment of SV specified by n = increment value in m/s (resolution of 1 decimal place).	SV•X
DISPLAY SOUND INCREMENT	Displays the logging increment for sound velocity in m/s.	SV•X

Output Format Commands

Command	Description	Requires
DISPLAY SCAN	Displays current scan options.	
SET SCAN NOBAT	Turns the battery channel off.	
SET SCAN BAT	Turns the battery channel on.	
SET SCAN NODENSITY	Turns the calculated density channel off.	C•X, T•X, and P•X, CT•X and P•X, or SV•X, T•X, and P•X
SET SCAN DENSITY	Turns the calculated density channel on.	C•X, T•X, and P•X, CT•X and P•X, or SV•X, T•X, and P•X
SET SCAN NOSALINITY	Turns the calculated salinity channel off.	C•X, T•X, and P•X, CT•X and P•X, or SV•X, T•X, and P•X
SET SCAN SALINITY	Turns the calculated salinity channel on.	C•X, T•X, and P•X, CT•X and P•X ,or SV•X, T•X, and P•X
SET SCAN NOSV	Turns the calculated sound velocity channel off, removing it from the instrument output scans. Current salinity display status is viewable using DIS SCAN.	C•X, T•X, and P•X, or CT•X and P•X
SET SCAN SV	Turns the calculated sound velocity channel on, allowing it to be present in instrument output scans. Current salinity display status is viewable using DIS SCAN. This is only available when C,P and T sensors are attached.	C•X, T•X, and P•X, or CT•X and P•X
SET SCAN TIME	Enables displaying time in data scan.	
SET SCAN NOTIME	Disables time from being displayed in data scan.	
SET SCAN DATE	Enables displaying date in data scan.	
SET SCAN NODATE	Disables date from being displayed in data scan.	
DISPLAY STARTUP	Displays the power up output settings.	
SET STARTUP PROMPT	Sets the instrument to wait for user commands on power up.	
SET STARTUP SCAN	Sets the instrument to output one scan on power up and then wait for a user command.	
SET STARTUP MONITOR	Sets the instrument to start monitoring data on power up.	
SET STARTUP NOHEADER	Disables the instrument identification header output on power up.	
SET STARTUP HEADER	Enables the instrument identification header output on power up.	

Logging Commands

Command	Description	Requires
SET SCAN LOGGING	Enables simultaneous logging and real-time output. If real- time logging in air is desired, set instrument conductivity threshold and sound velocity and pressure increments to zero.	
SET SCAN	Disables simultaneous real-time logging.	
NOLOGGING		

SET TIMEOUT nn	nn is time in minutes from 0 to 30. Enters logging mode after the specified time interval has passed in which the instrument has been idle. Power the unit off, then on to exit the logging mode. A time interval of 0 will deactivate the command. Setting is viewable using DIS STARTUP.	
LOG	Puts unit into logging mode from real-time mode. It will remain in logging mode until power is turned off.	
SET LOG ttttttt.ttt	Sets new log file name. ttttttt.ttt = log file name. Name can have up to 8 characters in length and 3 characters for file extension.	
INIT	Clears the instrument's logging memory.	
DIRECTORY	Displays list of files in instrument memory and memory status including amount of memory space free and used.	
DUMP tttttttt.ttt	Dumps the data of the specified logged file defined by tttttttt.ttt in REAL or RAW format depending on the current instrument mode.	
DELETE tttttttt.ttt	Erases specified logged file defined by tttttttt.ttt Maximum 8 character name with 3 character extension.	
DISPLAY LOG	Displays current log file name.	

General Commands

Command	Description	Requires
SCAN	Measures and outputs one scan of data.	
MONITOR	Scan at the set sampling rate.	
VERSION	Displays the instrument identification header.	
DISPLAY OPTIONS	Displays the instrument status and user settings.	
ZERO	Corrects the barometric offset to set zero pressure at surface for current barometric pressure.	P•X
ZERO OFF	Disables barometric offset.	P•X
DIS TIME	Displays current time. Time format is hh:mm:ss.ss	
SET TIME hh:mm:ss.ss	Sets instrument time using 24 hour clock in format hh:mm:ss.ss	
DIS DATE	Displays the current date.	
SET DATE mm/dd/yy	Sets date using mm/dd/yy format.	
DETECT	Checks each slot in logger board to identify what is plugged in and displays sensor / board type and serial number or "empty" for each slot.	
DISPLAY BATTERY	Displays battery channel coefficients and shutdown voltage.	
TALK n	Enables communications directly with a sensor board via the logger board, where n = value from 1-3 that identifies the slot number of the board to be communicated with. See DETECT command.	
CTRL+C	Press CTRL key and C key at same time to exit sensor board talk mode & return to logger communications.	

Technical Specifications

For individual sensor specifications, please see each sensor's respective manual, located on the USB included with your purchase.

Calculated Parameters						
Туре	Required Sensors	Equation	Accuracy	Range		
Salinity	CT•X or C•X, T•X; P•X	TEOS10	±0.010 psu	0 to 42 psu		
Salinity (from SV)	SV•X, T•X, P•X	AML '07	±0.035 ppt	0 to 42 ppt		
Density	CT•X or C•X, T•X; P•X	TEOS10	±0.027 kg/m ³	990 to 1230 kg/m ³		
Density (from SV)	SV•X, T•X, P•X	TEOS10	±0.051 kg/m ³	990 to 1230 kg/m ³		
SV (from CTD)	CT•X or C•X, T•X; P•X	Chen & Millero '772	0.5 m/s			

Electrical

- Mother Board
 - Flash, non-volatile data memory (Minimum 1 GB)
 - Seven configurable slots
- Sensor Boards
 - Primary Xchange[™] sensor board(s)
 - Secondary Xchange[™] sensor board(s)
 - Analog sensor board(s)
- Auto detect RS232 or RS485 (1/2 duplex ASCII)
- Autobaud to 38,400

Power

- External Power Supply: 10 to 36 VDC
- Current Draw
 - See tables on following pages
 - o 50 mA in standby mode
 - 60 µA when in low power mode

² Chen and Millero, "Speed of sound in seawater at high pressures," 1129-1135.

	P1S3 and P1S4 Current Draw*						
Primary Sensor	Secondary Sensor	Secondary Sensor	Secondary Sensor	Secondary Sensor	Current Draw [mA] - 12VDC +/- 5 mA	Current Draw [mA] - 24VDC +/- 5 mA	
C•X	-	-	-	-	120	73	
SV•X	-	-	-	-	122	73	
-	T•X	-	-	-	136	79	
-	P•X	-	-	-	125	74	
-	Tu•X	-	-	-	131	76	
SV•X	P•X	-	-	-	123	73	
SV•X	T•X	-	-	-	132	78	
SV•X	Tu•X	-	-	-	130	76	
SV•X	T•X	Tu•X	-	-	143	83	
SV•X	P•X	T•X	-	-	137	80	
SV•X	P•X	T•X	Tu•X	-	146	85	
SV•X	T•X	Tu•X	UV•X (SINGLE)	-	322	179	
SV•X	T•X	Tu•X	UV•X (QUAD)	-	434	253	
C•X	т•Х	-	-	-	132	78	
C•X	P•X	-	-	-	123	73	
C•X	т•Х	P•X	-	-	137	80	
C•X	Tu•X	P•X	-	-	133	78	
C•X	Т•Х	Tu•X	-	-	142	83	
C•X	P•X	T•X	Tu•X	-	146	85	
C•X	P•X	T•X	Tu•X	UV•X (SINGLE)	325	181	
C•X	P•X	T•X	Tu•X	UV•X (QUAD)	437	255	

	P2S2 Current Draw*					
Primary Sensor	Primary Sensor	Secondary Sensor	Secondary Sensor	Current Draw [mA] - 12VDC +/- 5 mA	Current Draw [mA] - 24VDC +/- 5 mA	
SV•X	-	-	-	155	90	
-	C•X	-	-	155	90	
-	-	T•X	-	165	96	
-	-	P•X	-	157	92	
-	-	Tu•X	-	161	94	
SV•X	-	P•X	-	156	91	
SV•X	-	T•X	-	166	96	
SV•X	-	Tu•X	-	161	94	
SV•X	-	T•X	Tu•X	176	100	
SV•X	-	T•X	P•X	170	97	
-	C•X	т•х	-	168	96	
-	C•X	P•X	-	156	90	
-	C•X	P•X	T•X	168	97	
-	C•X	P•X	Tu•X	167	95	
-	C•X	т•х	Tu•X	176	100	
SV•X	C•X	т•х	P•X	171	98	
SV•X	C•X	T•X	Tu•X	176	100	
SV•X	C•X	P•X	Tu•X	167	95	
SV•X	C•X	P•X	UV•X _(QUAD)	493	259	
SV•X	C•X	P•X	UV•X _(SINGLE)	354	191	

*CT•X draws about the same current as C•X.

Pressure Case

- Hard anodized 7075-T6 aluminum (PDC-MTX-PXSX-60)
- Acetal copolymer plastic (PDC-MTX-PXSX-05)
- Environmental Limits
 - Storage: -40°C to 60°C
 Usage: -20°C to 45°C

	Housing				
Туре	Depth Rating	Diameter	Length	Weight (in water)	Weight (in air)
7075-T6	6000 m	100mm (4.0")	482mm (19.0")	3.1 kg (6.7 lbs)	5.2 kg (11.3 lbs)
Acetal Copolymer	500 m	100mm (4.0")	482mm (19.0")	1.2 kg (2.6 lbs)	3.3 kg (7.2 lbs)
Acetal Copolymer (Flared)	500 m	127mm (5.0")	541mm (21.3")	1.6 kg (3.6 lbs)	5.2 kg (11.3 lbs)

Connector					
Туре	Manufacturer	Pins	Sex	Material	Product Code
Bulkhead	Subconn	6	Female	Titanium	MCBH-6-FS
Bulkhead	Subconn	8	Female	Titanium	MCBH-8-FS

Sampling Capabilities

- Frequency
 - Time: From 25 samples per second to 1 per 24 hours
 - Pressure: Specific pressure increments in 0.01 dbar steps
 - Sound Velocity: Specific sound velocity increments in 0.1 m/s steps
- Configurations
 - o Single scan or continuous output
 - On command or autonomous on power up

Included Items

- Metrec•X Instrument
- 2m Data/Power Pigtail
- Black dummy plug
- Two primary sensor blanking plug (only one for P1S4 and P1S8)
- Two secondary sensor blanking plugs (four for P1S4 and up to 8 for P1S8)
- USB stick with manuals and documentation

Software

• SeaCast

Ordering Codes

Instruments

PDC-MTX-P1S4-60	METREC•X, P1S4, 6000m Housing
PDC-MTX-P2S2-60	METREC•X, P2S2, 6000m Housing
PDC-MTX-P1S4-05	METREC•X, P1S4, 500m Acetal Housing
PDC-MTX-*	METREC•XL, 500m Acetal Housing

*Custom configurations for independent UV and analog, third-party sensors. Contact AML for details.

Upgrade Options & Accessories

CSE-0026	Copper (Cu/Ni) Cage. Includes retaining collar.
MBR-PLX-STD	Mounting Clamps for Plus•X and Metrec•X instruments. 1 Pair (2 clamps)

Regulatory Information

This product is compliant within the requirements of CE standards.

Warranty

AML warrants the instrument for a period of TWO YEARS from the date of delivery. AML will repair or replace, at its option and at no charge, components which prove to be defective. The warranty applies only to the original purchaser of the instruments and only to instruments and sensors manufactured by AML Oceanographic. The warranty of third party sensors will apply as per the specific vendor's warranty policy. The warranty does not apply if the instrument has been damaged, by accident or misuse, and is void if repairs or modifications are made by other than authorized personnel.

This warranty is the only warranty for new product given by AML. No warranties implied by law, including but not limited to the implied warranties of merchantability and fitness for a particular purpose shall apply. In no event will AML be liable for any direct, indirect, consequential or incidental damages resulting from any defects or failure of performance of any instrument supplied by AML.

DISCLAIMER

AML reserves the right to make any changes in design or specifications at any time without incurring any obligation to modify previously delivered instruments. Manuals are produced for information and reference purposes and are subject to change without notice.

Technical Overview Drawings

Alternate Configuration: Dedicated Power Lines for UV Protection Micro 6 Provides RS232 or RS485 Serial Communications

